Kumar A, Mehan S, Tiwari A, Khan Z, Gupta G, Narula A
Curr Pharm Des. 2024; 30(39):3074-3107.
PMID: 39253923
DOI: 10.2174/0113816128321466240816075041.
Johnson S, Hudson J, Kapur J
J Neurophysiol. 2015; 113(7):2461-70.
PMID: 25609103
PMC: 4416584.
DOI: 10.1152/jn.00286.2014.
Lebeau G, DesGroseillers L, Sossin W, Lacaille J
Mol Brain. 2011; 4:22.
PMID: 21635779
PMC: 3118231.
DOI: 10.1186/1756-6606-4-22.
Uteshev V
Acta Biochim Biophys Sin (Shanghai). 2010; 42(1):8-20.
PMID: 20043042
PMC: 2796867.
DOI: 10.1093/abbs/gmp101.
Mangan P, Kapur J
J Neurophysiol. 2003; 91(2):946-57.
PMID: 14534286
PMC: 2892720.
DOI: 10.1152/jn.00547.2003.
How elevated extracellular Ca2+ inhibits quantal acetylcholine release at frog neuromuscular junctions in high K+.
Van Der Kloot W, LATTA R
Pflugers Arch. 1983; 397(2):85-9.
PMID: 6408607
DOI: 10.1007/BF00582044.
Influx of calcium, strontium, and barium in presynaptic nerve endings.
Nachshen D, Blaustein M
J Gen Physiol. 1982; 79(6):1065-87.
PMID: 6286843
PMC: 2216453.
DOI: 10.1085/jgp.79.6.1065.
Divalent cations and transmitter release at low concentration of tetrodotoxin.
Dascal N, Landau E, Lass Y
Biophys J. 1981; 35(3):573-86.
PMID: 6115688
PMC: 1327549.
DOI: 10.1016/S0006-3495(81)84813-8.
Tests of an electrostatic screening hypothesis of the inhibition of neurotransmitter release by cations at the frog neuromuscular junction.
Misler S, HURLBUT W
Biophys J. 1980; 31(1):9-30.
PMID: 6115687
PMC: 1328761.
DOI: 10.1016/S0006-3495(80)85037-5.
Ion transfer characteristics of the calcium current in bull-frog atrial myocytes.
Campbell D, Giles W, Shibata E
J Physiol. 1988; 403:239-66.
PMID: 2855341
PMC: 1190712.
DOI: 10.1113/jphysiol.1988.sp017248.
Protons resolve dual effects of calcium on miniature end-plate potential frequency at frog neuromuscular junctions.
Talbot P
J Gen Physiol. 1989; 93(4):745-60.
PMID: 2543733
PMC: 2216230.
DOI: 10.1085/jgp.93.4.745.
Block of current through single calcium channels by Fe, Co, and Ni. Location of the transition metal binding site in the pore.
Winegar B, Kelly R, Lansman J
J Gen Physiol. 1991; 97(2):351-67.
PMID: 1849961
PMC: 2216478.
DOI: 10.1085/jgp.97.2.351.
Voltage-dependent block by magnesium of neuronal nicotinic acetylcholine receptor channels in rat phaeochromocytoma cells.
Ifune C, Steinbach J
J Physiol. 1991; 443:683-701.
PMID: 1726594
PMC: 1179866.
DOI: 10.1113/jphysiol.1991.sp018858.
Catecholamine secretion in a rat pheochromocytoma cell line: two pathways for calcium entry.
Ritchie A
J Physiol. 1979; 286:541-61.
PMID: 571467
PMC: 1281588.
DOI: 10.1113/jphysiol.1979.sp012636.
Sodium and calcium fluxes in a clonal nerve cell line.
Stallcup W
J Physiol. 1979; 286:525-40.
PMID: 571466
PMC: 1281587.
DOI: 10.1113/jphysiol.1979.sp012635.
Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction.
Lewis C
J Physiol. 1979; 286:417-45.
PMID: 312319
PMC: 1281581.
DOI: 10.1113/jphysiol.1979.sp012629.
Surface charges and the effects of calcium on the frequency of miniature end-plate potentials at the frog neuromuscular junction.
Madden K, Van Der Kloot W
J Physiol. 1978; 276:227-32.
PMID: 306431
PMC: 1282421.
DOI: 10.1113/jphysiol.1978.sp012230.
The interaction of pH and divalent cations at the neuromuscular junction.
Landau E, Nachshen D
J Physiol. 1975; 251(3):775-90.
PMID: 241848
PMC: 1348416.
DOI: 10.1113/jphysiol.1975.sp011121.
Effects of magnesium on contractile responses induced by electrical transmural stimulation and noradrenaline in rabbit thoracic aorta.
Fujiwara M, Kitagawa H, Kurahashi K
Br J Pharmacol. 1978; 63(1):51-6.
PMID: 206307
PMC: 1668274.
DOI: 10.1111/j.1476-5381.1978.tb07773.x.
An estimate of the equilibrium dissociation constant for calcium as an antagonist of evoked acetylcholine release: implications for excitation-secretion coupling.
Silinsky E
Br J Pharmacol. 1977; 61(4):691-3.
PMID: 202363
PMC: 1668076.
DOI: 10.1111/j.1476-5381.1977.tb07562.x.