El Dika M, Fritz A, Toor R, Rodriguez P, Foley S, Ullah R
Results Probl Cell Differ. 2022; 70:375-396.
PMID: 36348115
PMC: 9703624.
DOI: 10.1007/978-3-031-06573-6_13.
Fritz A, El Dika M, Toor R, Rodriguez P, Foley S, Ullah R
Results Probl Cell Differ. 2022; 70:339-373.
PMID: 36348114
PMC: 9753575.
DOI: 10.1007/978-3-031-06573-6_12.
Chhetri K, Jang Y, Lansac Y, Maiti P
Biophys J. 2022; 121(24):4830-4839.
PMID: 36168289
PMC: 9808561.
DOI: 10.1016/j.bpj.2022.09.025.
Shintomi K
Epigenomes. 2022; 6(3).
PMID: 35893016
PMC: 9326633.
DOI: 10.3390/epigenomes6030020.
Fisher D, Krasinska L
Cells. 2022; 11(13).
PMID: 35805103
PMC: 9265933.
DOI: 10.3390/cells11132019.
Identification and characterization of histones in evidence a phylogenetic vicinity of Mycetozoans to the animal kingdom.
Poulet A, Mishra L, Teletchea S, Hayes J, Jacob Y, Thiriet C
NAR Genom Bioinform. 2021; 3(4):lqab107.
PMID: 34805990
PMC: 8600027.
DOI: 10.1093/nargab/lqab107.
The role of the DFF40/CAD endonuclease in genomic stability.
Kulbay M, Bernier-Parker N, Bernier J
Apoptosis. 2021; 26(1-2):9-23.
PMID: 33387146
DOI: 10.1007/s10495-020-01649-7.
Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation.
Liao R, Mizzen C
Epigenetics Chromatin. 2017; 10:29.
PMID: 28539972
PMC: 5440973.
DOI: 10.1186/s13072-017-0135-3.
Epigenetic characteristics of the mitotic chromosome in 1D and 3D.
Oomen M, Dekker J
Crit Rev Biochem Mol Biol. 2017; 52(2):185-204.
PMID: 28228067
PMC: 5456460.
DOI: 10.1080/10409238.2017.1287160.
Open and closed: the roles of linker histones in plants and animals.
Over R, Michaels S
Mol Plant. 2013; 7(3):481-91.
PMID: 24270504
PMC: 3941478.
DOI: 10.1093/mp/sst164.
Prediction of functional phosphorylation sites by incorporating evolutionary information.
Niu S, Wang Z, Ge D, Zhang G, Li Y
Protein Cell. 2012; 3(9):675-90.
PMID: 22802047
PMC: 4875371.
DOI: 10.1007/s13238-012-2048-z.
Histone modifiers in cancer: friends or foes?.
Cohen I, Poreba E, Kamieniarz K, Schneider R
Genes Cancer. 2011; 2(6):631-47.
PMID: 21941619
PMC: 3174261.
DOI: 10.1177/1947601911417176.
Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells.
Green A, Sarg B, Green H, Lonn A, Lindner H, Rundquist I
Epigenetics Chromatin. 2011; 4:15.
PMID: 21819549
PMC: 3177758.
DOI: 10.1186/1756-8935-4-15.
Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis.
Gutiyama L, Chagas da Cunha J, Schenkman S
Eukaryot Cell. 2008; 7(4):560-8.
PMID: 18281601
PMC: 2292618.
DOI: 10.1128/EC.00460-07.
cAMP signaling induces rapid loss of histone H3 phosphorylation in mammary adenocarcinoma-derived cell lines.
Rodriguez-Collazo P, Snyder S, Chiffer R, Zlatanova J, Leuba S, Smith C
Exp Cell Res. 2007; 314(1):1-10.
PMID: 17950276
PMC: 4426871.
DOI: 10.1016/j.yexcr.2007.09.011.
Control of the G2/M transition.
Stark G, Taylor W
Mol Biotechnol. 2006; 32(3):227-48.
PMID: 16632889
DOI: 10.1385/MB:32:3:227.
The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved.
Barber C, Turner F, Wang Y, Hagstrom K, Taverna S, Mollah S
Chromosoma. 2004; 112(7):360-71.
PMID: 15133681
DOI: 10.1007/s00412-004-0281-9.
The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation.
Contreras A, Hale T, Stenoien D, Rosen J, Mancini M, Herrera R
Mol Cell Biol. 2003; 23(23):8626-36.
PMID: 14612406
PMC: 262667.
DOI: 10.1128/MCB.23.23.8626-8636.2003.
The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer.
Vermeulen K, Bockstaele D, Berneman Z
Cell Prolif. 2003; 36(3):131-49.
PMID: 12814430
PMC: 6496723.
DOI: 10.1046/j.1365-2184.2003.00266.x.
A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants.
Ascenzi R, Gantt J
Plant Mol Biol. 1997; 34(4):629-41.
PMID: 9247544
DOI: 10.1023/a:1005886011722.