» Articles » PMID: 4331859

The Specificity of Combination Between Ristocetins and Peptides Related to Bacterial Cell Wall Mucopeptide Precursors

Overview
Journal Biochem J
Specialty Biochemistry
Date 1971 Oct 1
PMID 4331859
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

The affinity of ristocetin B for analogues of the C-terminal tripeptide sequence of bacterial cell wall mucopeptide precursors resembles that of vancomycin. Complex-formation requires a d-configuration in the two amino acid residues of the C-terminal dipeptide, an l-configuration is preferred in the preceding amino acid residue and positive charges on the peptide molecule decrease its affinity. The specificity of ristocetin B, however, differs from that of vancomycin in the requirements for the size of the side chains on the C-terminal dipeptide. These differences may explain the observed differences in antibiotic behaviour of vancomycin and ristocetin with particular micro-organisms. The optical rotatory dispersion and u.v.-absorption characteristics of the ristocetins are very different from those of vancomycin but nearly identical with those of ristomycin A. Aglycones prepared from ristomycin A were antibiotically active and also combined with a specific peptide.

Citing Articles

N-Terminus Alkylation of Vancomycin: Ligand Binding Affinity, Antimicrobial Activity, and Site-Specific Nature of Quaternary Trimethylammonium Salt Modification.

Wu Z, Isley N, Boger D ACS Infect Dis. 2018; 4(10):1468-1474.

PMID: 30067012 PMC: 6200594. DOI: 10.1021/acsinfecdis.8b00152.


Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation.

Phillips-Jones M, Harding S Biophys Rev. 2018; 10(2):347-362.

PMID: 29525835 PMC: 5899746. DOI: 10.1007/s12551-018-0404-9.


Full hydrodynamic reversibility of the weak dimerization of vancomycin and elucidation of its interaction with VanS monomers at clinical concentration.

Phillips-Jones M, Lithgo R, Dinu V, Gillis R, Harding J, Adams G Sci Rep. 2017; 7(1):12697.

PMID: 28983082 PMC: 5629194. DOI: 10.1038/s41598-017-12620-z.


Applications of Nonenzymatic Catalysts to the Alteration of Natural Products.

Shugrue C, Miller S Chem Rev. 2017; 117(18):11894-11951.

PMID: 28580785 PMC: 5742423. DOI: 10.1021/acs.chemrev.7b00022.


Hydrodynamics of the VanA-type VanS histidine kinase: an extended solution conformation and first evidence for interactions with vancomycin.

Phillips-Jones M, Channell G, Kelsall C, Hughes C, Ashcroft A, Patching S Sci Rep. 2017; 7():46180.

PMID: 28397853 PMC: 5387412. DOI: 10.1038/srep46180.


References
1.
Sinha R, Neuhaus R . Reversal of the vancomycin inhibition of peptidoglycan synthesis by cell walls. J Bacteriol. 1968; 96(2):374-82. PMC: 252308. DOI: 10.1128/jb.96.2.374-382.1968. View

2.
LOMAKINA N, Zenkova V, BOGNAR R, Sztaricskai F, SHEINKER I, Turchin K . [Structure of amino acids from the antibiotic ristomycin. Amino acid A]. Antibiotiki. 1968; 13(8):675-82. View

3.
Perkins H . Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem J. 1969; 111(2):195-205. PMC: 1187807. DOI: 10.1042/bj1110195. View

4.
Ghuysen J . Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev. 1968; 32(4 Pt 2):425-64. PMC: 413160. View

5.
LOMAKINA N, Spiridonova I, BOGNAR R, Puskas M, Sztaricskai F . [On the isolation and properties of desoxyamino sugar from ristomycin]. Antibiotiki. 1968; 13(11):975-8. View