Moore A, Borck K, Baxter R
Planta. 2014; 97(4):299-309.
PMID: 24493274
DOI: 10.1007/BF00390209.
Paterson D, Wraight C
Photosynth Res. 2014; 26(3):195-201.
PMID: 24420584
DOI: 10.1007/BF00033132.
Raven J
J Membr Biol. 2013; 6(2):89-107.
PMID: 24173386
DOI: 10.1007/BF01873457.
Albracht S
J Bioenerg Biomembr. 2010; 42(4):261-78.
PMID: 20628895
DOI: 10.1007/s10863-010-9301-z.
Hong S, Pedersen P
Microbiol Mol Biol Rev. 2008; 72(4):590-641, Table of Contents.
PMID: 19052322
PMC: 2593570.
DOI: 10.1128/MMBR.00016-08.
Temperature Effects on Mitochondrial Respiration in Phaseolus acutifolius A. Gray and Phaseolus vulgaris L.
Lin T, Markhart A
Plant Physiol. 1990; 94(1):54-8.
PMID: 16667718
PMC: 1077188.
DOI: 10.1104/pp.94.1.54.
Amino Acid Transport into Cultured Tobacco Cells: I. LYSINE TRANSPORT.
Harrington H, Henke R
Plant Physiol. 1981; 67(2):373-8.
PMID: 16661678
PMC: 425686.
DOI: 10.1104/pp.67.2.373.
Membrane Mg-(Ca)-Activated Adenosine Triphosphatase of Escherichia coli: Characterization in the Membrane-Bound and Solubilized States.
Evans D
J Bacteriol. 1970; 104(3):1203-12.
PMID: 16559094
PMC: 248278.
DOI: 10.1128/jb.104.3.1203-1212.1970.
Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus.
Maness P, Huang J, Smolinski S, Tek V, Vanzin G
Appl Environ Microbiol. 2005; 71(6):2870-4.
PMID: 15932979
PMC: 1151794.
DOI: 10.1128/AEM.71.6.2870-2874.2005.
Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12.
Friedl P, Hoppe J, Gunsalus R, Michelsen O, von Meyenburg K, Schairer H
EMBO J. 1983; 2(1):99-103.
PMID: 11894918
PMC: 555094.
DOI: 10.1002/j.1460-2075.1983.tb01388.x.
Chemiosmotic energy conservation with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii.
Imkamp F, Muller V
J Bacteriol. 2002; 184(7):1947-51.
PMID: 11889102
PMC: 134933.
DOI: 10.1128/JB.184.7.1947-1951.2002.
Characterization of Mg2+-ATPase activity in isolated B16 murine melanoma melanosomes.
Bhatnagar V, Ramalah A
Mol Cell Biochem. 1999; 189(1-2):99-106.
PMID: 9879659
DOI: 10.1023/a:1006876411202.
Inhibition of nicotinamide nucleotide transhydrogenase in rat liver submitochondrial particles by dicyclohexylcarbodi-imide and butanedione.
Moody A, Reid R
Biochem J. 1983; 209(3):889-92.
PMID: 6870796
PMC: 1154171.
DOI: 10.1042/bj2090889.
The pathway of inorganic-phosphate efflux from isolated liver mitochondria during adenosine triphosphate hydrolysis.
Tyler D
Biochem J. 1980; 192(3):821-8.
PMID: 6453587
PMC: 1162405.
DOI: 10.1042/bj1920821.
Partial characterization of the plasma membrane ATPase from a rho0 petite strain of Saccharomyces cerevisiae.
McDonough J, Jaynes P, Mahler H
J Bioenerg Biomembr. 1980; 12(3-4):249-64.
PMID: 6452450
DOI: 10.1007/BF00744687.
N,N'-dicyclohexylcarbodiimide binds specifically to a single glutamyl residue of the proteolipid subunit of the mitochondrial adenosinetriphosphatases from Neurospora crassa and Saccharomyces cerevisiae.
Sebald W, Machleidt W, Wachter E
Proc Natl Acad Sci U S A. 1980; 77(2):785-9.
PMID: 6444724
PMC: 348365.
DOI: 10.1073/pnas.77.2.785.
Nucleotide and bivalent cation specificity of the insulin-granule proton translocase.
Hutton J, Peshavaria M
Biochem J. 1983; 210(1):235-42.
PMID: 6303313
PMC: 1154210.
DOI: 10.1042/bj2100235.
The dicyclohexylcarbodiimide-binding protein c of ATP synthase from Escherichia coli is not sufficient to express an efficient H+ conduction.
Friedl P, Bienhaus G, Hoppe J, Schairer H
Proc Natl Acad Sci U S A. 1981; 78(11):6643-6.
PMID: 6273880
PMC: 349105.
DOI: 10.1073/pnas.78.11.6643.
Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases.
Vignais P, Satre M
Mol Cell Biochem. 1984; 60(1):33-71.
PMID: 6231469
DOI: 10.1007/BF00226299.
Structure and function of the membrane-integral components of the mitochondrial H+-ATPase.
Houstek J, Kopecky J, Svoboda P, Drahota Z
J Bioenerg Biomembr. 1982; 14(1):1-13.
PMID: 6216249
DOI: 10.1007/BF00744075.