Changeux J
Biomolecules. 2020; 10(4).
PMID: 32260196
PMC: 7226243.
DOI: 10.3390/biom10040547.
Koneczny I, Herbst R
Cells. 2019; 8(7).
PMID: 31269763
PMC: 6678492.
DOI: 10.3390/cells8070671.
Taly A, Henin J, Changeux J, Cecchini M
Channels (Austin). 2014; 8(4):350-60.
PMID: 25478624
PMC: 4203737.
DOI: 10.4161/chan.29444.
Changeux J
J Biol Chem. 2013; 288(38):26969-26986.
PMID: 23878193
PMC: 3779700.
DOI: 10.1074/jbc.X113.503375.
Changeux J
J Biol Chem. 2012; 287(48):40207-15.
PMID: 23038257
PMC: 3504736.
DOI: 10.1074/jbc.R112.407668.
Structural answers and persistent questions about how nicotinic receptors work.
Wells G
Front Biosci. 2008; 13:5479-510.
PMID: 18508600
PMC: 2430769.
DOI: 10.2741/3094.
Purification of Torpedo californica post-synaptic membranes and fractionation of their constituent proteins.
Elliott J, Blanchard S, Wu W, Miller J, Strader C, Hartig P
Biochem J. 1980; 185(3):667-77.
PMID: 7387629
PMC: 1161444.
DOI: 10.1042/bj1850667.
Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ.
Cartaud J, Sobel A, Rousselet A, Devaux P, Changeux J
J Cell Biol. 1981; 90(2):418-26.
PMID: 7287814
PMC: 2111861.
DOI: 10.1083/jcb.90.2.418.
Cytoplasmic surface structure in postsynaptic membranes from electric tissue visualized by tannic-acid-mediated negative contrasting.
Sealock R
J Cell Biol. 1982; 92(2):514-22.
PMID: 7061593
PMC: 2112082.
DOI: 10.1083/jcb.92.2.514.
Structure and function of an acetylcholine receptor.
Kistler J, Stroud R, Klymkowsky M, Lalancette R, Fairclough R
Biophys J. 1982; 37(1):371-83.
PMID: 7055628
PMC: 1329155.
DOI: 10.1016/S0006-3495(82)84685-7.
Protease effects on the structure of acetylcholine receptor membranes from Torpedo californica.
Klymkowsky M, Heuser J, Stroud R
J Cell Biol. 1980; 85(3):823-38.
PMID: 6993498
PMC: 2111471.
DOI: 10.1083/jcb.85.3.823.
Electron microscopy of complexes of isolated acetylcholine receptor, biotinyl-toxin, and avidin.
Holtzman E, Wise D, Wall J, Karlin A
Proc Natl Acad Sci U S A. 1982; 79(2):310-4.
PMID: 6952187
PMC: 345716.
DOI: 10.1073/pnas.79.2.310.
Crystalline arrays of membrane-bound acetylcholine receptor.
Kistler J, Stroud R
Proc Natl Acad Sci U S A. 1981; 78(6):3678-82.
PMID: 6943572
PMC: 319634.
DOI: 10.1073/pnas.78.6.3678.
Topographic studies of Torpedo acetylcholine receptor subunits as a transmembrane complex.
Strader C, RAFTERY M
Proc Natl Acad Sci U S A. 1980; 77(10):5807-11.
PMID: 6934512
PMC: 350160.
DOI: 10.1073/pnas.77.10.5807.
Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance.
Moore H, RAFTERY M
Proc Natl Acad Sci U S A. 1980; 77(8):4509-13.
PMID: 6933499
PMC: 349873.
DOI: 10.1073/pnas.77.8.4509.
Structural details of membrane-bound acetylcholine receptor from Tropedo marmorata.
Zingsheim H, Neugebauer D, Barrantes F, Frank J
Proc Natl Acad Sci U S A. 1980; 77(2):952-6.
PMID: 6928692
PMC: 348401.
DOI: 10.1073/pnas.77.2.952.
Freeze-fracture and electrophysiological studies of newly developed acetylcholine receptors in Xenopus embryonic muscle cells.
Bridgman P, Nakajima S, Greenberg A, Nakajima Y
J Cell Biol. 1984; 98(6):2160-73.
PMID: 6725410
PMC: 2113044.
DOI: 10.1083/jcb.98.6.2160.
Different channel properties of Torpedo acetylcholine receptor monomers and dimers reconstituted in planar membranes.
Schindler H, Spillecke F, Neumann E
Proc Natl Acad Sci U S A. 1984; 81(19):6222-6.
PMID: 6091143
PMC: 391892.
DOI: 10.1073/pnas.81.19.6222.
Structure and ultrastructure of the frog motor endplate. A freeze-etching study.
Peper K, Dreyer F, Sandri C, Akert K, Moor H
Cell Tissue Res. 1974; 149(4):437-55.
PMID: 4546545
DOI: 10.1007/BF00223024.
Substructure of amphibian motor end plate. Evidence for a granular component projecting from the outer surface of the receptive membrane.
Rosenbluth J
J Cell Biol. 1974; 62(3):755-66.
PMID: 4369247
PMC: 2109205.
DOI: 10.1083/jcb.62.3.755.