6.
Zhang Y, Liu K, Chi C, Chen L, Li X
. Preparation, stability and controlled release properties of starch-based micelles for oral delivery of hydrophobic bioactive molecules. Int J Biol Macromol. 2024; 262(Pt 2):130241.
DOI: 10.1016/j.ijbiomac.2024.130241.
View
7.
Chen C, Wang Z, Fu H, Yu G, Luo X, Zhu K
. Enhanced bioavailability of curcumin amorphous nanocomposite prepared by a green process using modified starch. Int J Biol Macromol. 2024; 270(Pt 1):132210.
DOI: 10.1016/j.ijbiomac.2024.132210.
View
8.
Wang R, Qin X, Du Y, Shan Z, Shi C, Huang K
. Dual-modified starch nanoparticles containing aromatic systems with highly efficient encapsulation of curcumin and their antibacterial applications. Food Res Int. 2022; 162(Pt A):111926.
DOI: 10.1016/j.foodres.2022.111926.
View
9.
Chen Y, She Y, Zhang R, Wang J, Zhang X, Gou X
. Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases. Food Sci Nutr. 2020; 8(1):16-22.
PMC: 6977435.
DOI: 10.1002/fsn3.1303.
View
10.
Khan M, Masood A, Ali K, Farid N, Bashir A, Dar M
. Green synthesis of silver, starch, and zinc oxide mediated nanoparticles with probiotics and plant extracts, their characterization and anti-bacterial activity. Microb Pathog. 2024; 196:107012.
DOI: 10.1016/j.micpath.2024.107012.
View
11.
Qiu Z, Chen L, Liu Z, Zheng B
. Rational mutual interactions in starch-lipid-chlorogenic acid ternary systems enable formation of ordered starch structure for anti-digestibility during hot-extrusion 3D printing: Based on the nonlinear rheology and molecular simulation. Food Chem. 2024; 465(Pt 2):141997.
DOI: 10.1016/j.foodchem.2024.141997.
View
12.
Gressler S, Hipfinger C, Part F, Pavlicek A, Zafiu C, Giese B
. A systematic review of nanocarriers used in medicine and beyond - definition and categorization framework. J Nanobiotechnology. 2025; 23(1):90.
PMC: 11804063.
DOI: 10.1186/s12951-025-03113-7.
View
13.
OBrien Laramy M, Foley D, Pak R, Lewis J, McKinney E, Egan P
. Chemistry, manufacturing and controls strategies for using novel excipients in lipid nanoparticles. Nat Nanotechnol. 2025; .
DOI: 10.1038/s41565-024-01833-9.
View
14.
Yang L, He R, Chai J, Qi X, Xue Q, Bi X
. Synthesis Strategies for High Entropy Nanoparticles. Adv Mater. 2024; 37(1):e2412337.
DOI: 10.1002/adma.202412337.
View
15.
Hashem A, El-Naggar M, Abdelaziz A, Abdelbary S, Hassan Y, Hasanin M
. Bio-based antimicrobial food packaging films based on hydroxypropyl starch/polyvinyl alcohol loaded with the biosynthesized zinc oxide nanoparticles. Int J Biol Macromol. 2023; 249:126011.
DOI: 10.1016/j.ijbiomac.2023.126011.
View
16.
Meng F, Tian S, Chen Y, Liu Z
. Preparation and physicochemical properties of OSA modified Cyperus esculentus starch nanoparticles. Int J Biol Macromol. 2025; 292:140045.
DOI: 10.1016/j.ijbiomac.2025.140045.
View
17.
Yu X, Zhao W, Zou Q, Wang L
. Amphiphilic hydroxyethyl starch-based nanoparticles carrying linoleic acid modified berberine inhibit the expression of kras oncogene in zebrafish. Biomed Pharmacother. 2024; 176:116798.
DOI: 10.1016/j.biopha.2024.116798.
View
18.
Mishra B, Panda J, Mishra A, Nath P, Nayak P, Mahapatra U
. Recent advances in sustainable biopolymer-based nanocomposites for smart food packaging: A review. Int J Biol Macromol. 2024; 279(Pt 4):135583.
DOI: 10.1016/j.ijbiomac.2024.135583.
View
19.
Chen R, Wang L, Ji D, Luo M, Zhang Z, Zhao G
. Highly stretchable, conductive, and self-adhesive starch-based hydrogel for high-performance flexible electronic devices. Carbohydr Polym. 2025; 352():123220.
DOI: 10.1016/j.carbpol.2025.123220.
View
20.
Priyanka S, Namasivayam S, Kennedy J, Moovendhan M
. Starch-chitosan-Taro mucilage nanocomposite active food packaging film doped with zinc oxide nanoparticles - Fabrication, mechanical properties, anti-bacterial activity and eco toxicity assessment. Int J Biol Macromol. 2024; 277(Pt 3):134319.
DOI: 10.1016/j.ijbiomac.2024.134319.
View