6.
Yi Q, Liang B, Nan Q, Wang H, Zhang W, Wu W
. Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment. Sci Total Environ. 2020; 721:137670.
DOI: 10.1016/j.scitotenv.2020.137670.
View
7.
Han X, Sun X, Wang C, Wu M, Dong D, Zhong T
. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Sci Rep. 2016; 6:24731.
PMC: 4835783.
DOI: 10.1038/srep24731.
View
8.
Nan Q, Hu S, Qin Y, Wu W
. Methane oxidation activity inhibition via high amount aged biochar application in paddy soil. Sci Total Environ. 2021; 796:149050.
DOI: 10.1016/j.scitotenv.2021.149050.
View
9.
Nan Q, Wang C, Wang H, Yi Q, Wu W
. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Sci Total Environ. 2020; 746:141351.
DOI: 10.1016/j.scitotenv.2020.141351.
View
10.
Zhu J, Wang Q, Yuan M, Tan G, Sun F, Wang C
. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review. Water Res. 2016; 90:203-215.
DOI: 10.1016/j.watres.2015.12.020.
View
11.
Wu Z, Song Y, Shen H, Jiang X, Li B, Xiong Z
. Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils. Environ Pollut. 2019; 253:1038-1046.
DOI: 10.1016/j.envpol.2019.07.073.
View
12.
Nyerges G, Han S, Stein L
. Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol. 2010; 76(16):5648-51.
PMC: 2918979.
DOI: 10.1128/AEM.00747-10.
View
13.
Stein L
. The double life of Methanoperedens. Nat Microbiol. 2023; 8(2):189-190.
DOI: 10.1038/s41564-022-01302-w.
View
14.
McIlroy S, Leu A, Zhang X, Newell R, Woodcroft B, Yuan Z
. Anaerobic methanotroph 'Candidatus Methanoperedens nitroreducens' has a pleomorphic life cycle. Nat Microbiol. 2023; 8(2):321-331.
DOI: 10.1038/s41564-022-01292-9.
View
15.
Tamames J, Puente-Sanchez F
. SqueezeMeta, A Highly Portable, Fully Automatic Metagenomic Analysis Pipeline. Front Microbiol. 2019; 9:3349.
PMC: 6353838.
DOI: 10.3389/fmicb.2018.03349.
View
16.
Li D, Liu C, Luo R, Sadakane K, Lam T
. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015; 31(10):1674-6.
DOI: 10.1093/bioinformatics/btv033.
View
17.
Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S
. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019; 36(7):2251-2252.
PMC: 7141845.
DOI: 10.1093/bioinformatics/btz859.
View
18.
Parks D, Chuvochina M, Rinke C, Mussig A, Chaumeil P, Hugenholtz P
. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2021; 50(D1):D785-D794.
PMC: 8728215.
DOI: 10.1093/nar/gkab776.
View
19.
Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F
. A genomic catalog of Earth's microbiomes. Nat Biotechnol. 2020; 39(4):499-509.
PMC: 8041624.
DOI: 10.1038/s41587-020-0718-6.
View
20.
Kolb S, Knief C, Stubner S, Conrad R
. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol. 2003; 69(5):2423-9.
PMC: 154495.
DOI: 10.1128/AEM.69.5.2423-2429.2003.
View