Towards a Holistic Framework for Multimodal LLM in 3D Brain CT Radiology Report Generation
Overview
Authors
Affiliations
Multi-modal large language models (MLLMs) have transformed the landscape of modern healthcare, with automated radiology report generation (RRG) emerging as a cutting-edge application. While 2D MLLM-based RRG has been well established, its utility for 3D medical images remains largely unexplored. In this regard, we curate the 3D-BrainCT dataset (18,885 text-scan pairs) and develop BrainGPT, a clinically visual instruction-tuned (CVIT) model designed for 3D CT RRG. While we notice that the traditional LLM metrics failed to gauge the diagnostic quality of the RRG, we propose feature-oriented radiology task evaluation (FORTE), an evaluation scheme that captures the clinical essence of the generated reports. Here we show that BrainGPT achieves an average FORTE F1-score of 0.71 (degree = 0.661; landmark = 0.706; feature = 0.693, and impression = 0.779) and 74% of BrainGPT-generated reports were indistinguishable from human-written ground truth in a Turing-like test. Together, our work establishes a comprehensive framework encompassing dataset curation, anatomy-aware model fine-tuning, and the development of robust evaluation metrics for the RRG. By sharing our experience in 3D MLLM-based RRG, we aim to accelerate the expedition in human-machine collaboration for next-generation healthcare.
Towards a holistic framework for multimodal LLM in 3D brain CT radiology report generation.
Li C, Chang K, Yang C, Wu H, Chen W, Bansal H Nat Commun. 2025; 16(1):2258.
PMID: 40050277 PMC: 11885477. DOI: 10.1038/s41467-025-57426-0.