» Articles » PMID: 40032850

Cortical Processing of Discrete Prosodic Patterns in Continuous Speech

Overview
Journal Nat Commun
Specialty Biology
Date 2025 Mar 3
PMID 40032850
Authors
Affiliations
Soon will be listed here.
Abstract

Prosody has a vital function in speech, structuring a speaker's intended message for the listener. The superior temporal gyrus (STG) is considered a critical hub for prosody, but the role of earlier auditory regions like Heschl's gyrus (HG), associated with pitch processing, remains unclear. Using intracerebral recordings in humans and non-human primate models, we investigated prosody processing in narrative speech, focusing on pitch accents-abstract phonological units that signal word prominence and communicative intent. In humans, HG encoded pitch accents as abstract representations beyond spectrotemporal features, distinct from segmental speech processing, and outperforms STG in disambiguating pitch accents. Multivariate models confirm HG's unique representation of pitch accent categories. In the non-human primate, pitch accents were not abstractly encoded, despite robust spectrotemporal processing, highlighting the role of experience in shaping abstract representations. These findings emphasize a key role for the HG in early prosodic abstraction and advance our understanding of human speech processing.

References
1.
Davies D, Bouldin D . A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. 2011; 1(2):224-7. View

2.
Faraji A, Remick M, Abel T . Contributions of Robotics to the Safety and Efficacy of Invasive Monitoring With Stereoelectroencephalography. Front Neurol. 2021; 11:570010. PMC: 7772229. DOI: 10.3389/fneur.2020.570010. View

3.
Li Y, Tang C, Lu J, Wu J, Chang E . Human cortical encoding of pitch in tonal and non-tonal languages. Nat Commun. 2021; 12(1):1161. PMC: 7896081. DOI: 10.1038/s41467-021-21430-x. View

4.
Rupp K, Hect J, Remick M, Ghuman A, Chandrasekaran B, Holt L . Neural responses in human superior temporal cortex support coding of voice representations. PLoS Biol. 2022; 20(7):e3001675. PMC: 9333263. DOI: 10.1371/journal.pbio.3001675. View

5.
Bendor D, Osmanski M, Wang X . Dual-pitch processing mechanisms in primate auditory cortex. J Neurosci. 2012; 32(46):16149-61. PMC: 3752143. DOI: 10.1523/JNEUROSCI.2563-12.2012. View