6.
Jiang Y, Lin Y, Krishnaswamy S, Pan R, Wu Q, Sandusky-Beltran L
. Single-domain antibody-based noninvasive in vivo imaging of α-synuclein or tau pathology. Sci Adv. 2023; 9(19):eadf3775.
PMC: 10171817.
DOI: 10.1126/sciadv.adf3775.
View
7.
Faust T, Robbiati S, Huerta T, Huerta P
. Dynamic NMDAR-mediated properties of place cells during the object place memory task. Front Behav Neurosci. 2014; 7:202.
PMC: 3865705.
DOI: 10.3389/fnbeh.2013.00202.
View
8.
Yoshiyama Y, Higuchi M, Zhang B, Huang S, Iwata N, Saido T
. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007; 53(3):337-51.
DOI: 10.1016/j.neuron.2007.01.010.
View
9.
Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, van Slegtenhorst M
. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet. 2000; 25(4):402-5.
DOI: 10.1038/78078.
View
10.
Jiang Y, Lin Y, Tetlow A, Pan R, Ji C, Kong X
. Single-domain antibody-based protein degrader for synucleinopathies. Mol Neurodegener. 2024; 19(1):44.
PMC: 11140919.
DOI: 10.1186/s13024-024-00730-y.
View
11.
Dam T, Boxer A, Golbe L, Hoglinger G, Morris H, Litvan I
. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med. 2021; 27(8):1451-1457.
DOI: 10.1038/s41591-021-01455-x.
View
12.
Sigurdsson E
. Alzheimer's therapy development: A few points to consider. Prog Mol Biol Transl Sci. 2019; 168:205-217.
DOI: 10.1016/bs.pmbts.2019.06.001.
View
13.
Boutajangout A, Ingadottir J, Davies P, Sigurdsson E
. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011; 118(4):658-67.
PMC: 3366469.
DOI: 10.1111/j.1471-4159.2011.07337.x.
View
14.
Li T, Vandesquille M, Koukouli F, Dudeffant C, Youssef I, Lenormand P
. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release. 2016; 243:1-10.
DOI: 10.1016/j.jconrel.2016.09.019.
View
15.
Congdon E, Gu J, Sait H, Sigurdsson E
. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem. 2013; 288(49):35452-65.
PMC: 3853292.
DOI: 10.1074/jbc.M113.491001.
View
16.
Krishnaswamy S, Huang H, Marchal I, Ryoo H, Sigurdsson E
. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol Dis. 2020; 137:104770.
PMC: 7178494.
DOI: 10.1016/j.nbd.2020.104770.
View
17.
Miedel C, Patton J, Miedel A, Miedel E, Levenson J
. Assessment of Spontaneous Alternation, Novel Object Recognition and Limb Clasping in Transgenic Mouse Models of Amyloid-β and Tau Neuropathology. J Vis Exp. 2017; (123).
PMC: 5608159.
DOI: 10.3791/55523.
View
18.
Nelson P, Alafuzoff I, Bigio E, Bouras C, Braak H, Cairns N
. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012; 71(5):362-81.
PMC: 3560290.
DOI: 10.1097/NEN.0b013e31825018f7.
View
19.
DeVos S, Miller R, Schoch K, Holmes B, Kebodeaux C, Wegener A
. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017; 9(374).
PMC: 5792300.
DOI: 10.1126/scitranslmed.aag0481.
View
20.
Gu J, Congdon E, Sigurdsson E
. Two novel Tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce Tau protein pathology. J Biol Chem. 2013; 288(46):33081-95.
PMC: 3829157.
DOI: 10.1074/jbc.M113.494922.
View