Beyond the Loss of Beta Cells: a Quantitative Analysis of Islet Architecture in Adults with and Without Type 1 Diabetes
Overview
Authors
Affiliations
Aims/hypothesis: The organisation and cellular architecture of islets of Langerhans are critical to the physiological regulation of hormone secretion but it is debated whether human islets adhere to the characteristic mantle-core (M-C) structure seen in rodents. It is also unclear whether inherent architectural changes contribute to islet dysfunction in type 1 diabetes, aside from the loss of beta cells. Therefore, we have exploited advances in immunostaining, spatial biology and machine learning to undertake a detailed, systematic analysis of adult human islet architecture in health and type 1 diabetes, by a quantitative analysis of a dataset of >250,000 endocrine cells in >3500 islets from ten individuals.
Methods: Formalin-fixed paraffin-embedded pancreatic sections (4 μm) from organ donors without diabetes and living donors with recent-onset type 1 diabetes were stained for all five islet hormones and imaged prior to analysis, which employed a novel automated pipeline using QuPath software, capable of running on a standard laptop. Whole-slide image analysis involved segmentation classifiers, cell detection and phenotyping algorithms to identify islets, specific cell types and their locations as (x,y)-coordinates in regions of interest. Each endocrine cell was categorised into binary variables for cell type (i.e. beta or non-beta) and position (mantle or core). A χ test for independence of these properties was performed and the OR was considered to estimate the effect size of the potential association between position and cell type. A quantification of the M-C structure at islet level was performed by computing the probability, r, that the observed number of non-beta cells in the mantle is due to a random arrangement. The distribution of the r values for the islets in the study was contrasted against the r values of a digital population of equivalent randomly arranged islets, termed digital siblings. Both distributions of r values were compared using the earth mover's distance (EMD), a mathematical tool employed to describe differences in distribution patterns. The EMD was also used to contrast the distribution of islet size and beta cell fraction between type 1 diabetes and control islets.
Results: The χ test supports the existence of a significant (p<0.001) relationship between cell position and type. The effect size was measured via the OR <0.8, showing that non-beta cells are more likely to be found at the mantle (and vice versa). At the islet level, the EMD between the distributions of r values of the observed islets and the digital siblings was emd-1d=0.10951 (0<emd-1d<1). The transport plan showed a substantial group of islets with a small r value, thus supporting the M-C hypothesis. The bidimensional distribution (beta cell fraction vs size) of islets showed a distance emd-2d=0.285 (0<emd-2d<2) between the control and type 1 diabetes islets. The suffixes '-1d' and '-2d' are used to distinguish the comparison between the distribution of one and two variables.
Conclusions/interpretation: Using a novel analysis pipeline, statistical evidence supports the existence of an M-C structure in human adult islets, irrespective of type 1 diabetes status. The methods presented in the current study offer potential applications in spatial biology, islet immunopathology, transplantation and organoid research, and developmental research.