6.
Wang S, Liang H, Wei Y, Zhang P, Dang Y, Li G
. Alternative Splicing of Is Important for Growth and Pathogenesis in . Front Microbiol. 2021; 12:715773.
PMC: 8322540.
DOI: 10.3389/fmicb.2021.715773.
View
7.
Veloso J, van Kan J
. Many Shades of Grey in Botrytis-Host Plant Interactions. Trends Plant Sci. 2018; 23(7):613-622.
DOI: 10.1016/j.tplants.2018.03.016.
View
8.
Cheng X, Zhao C, Gao L, Zeng L, Xu Y, Liu F
. Alternative splicing reprogramming in fungal pathogen at different infection stages on . Front Plant Sci. 2022; 13:1008665.
PMC: 9597501.
DOI: 10.3389/fpls.2022.1008665.
View
9.
Almagro Armenteros J, Tsirigos K, Sonderby C, Petersen T, Winther O, Brunak S
. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019; 37(4):420-423.
DOI: 10.1038/s41587-019-0036-z.
View
10.
Trincado J, Entizne J, Hysenaj G, Singh B, Skalic M, Elliott D
. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 2018; 19(1):40.
PMC: 5866513.
DOI: 10.1186/s13059-018-1417-1.
View
11.
Ontiveros-Palacios N, Cooke E, Nawrocki E, Triebel S, Marz M, Rivas E
. Rfam 15: RNA families database in 2025. Nucleic Acids Res. 2024; 53(D1):D258-D267.
PMC: 11701678.
DOI: 10.1093/nar/gkae1023.
View
12.
Xing Y, Lee C
. Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes. Nat Rev Genet. 2006; 7(7):499-509.
DOI: 10.1038/nrg1896.
View
13.
Spada M, Pugliesi C, Fambrini M, Pecchia S
. Challenges and Opportunities Arising from Host- Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci. 2024; 25(12).
PMC: 11203536.
DOI: 10.3390/ijms25126798.
View
14.
Jeon J, Kim K, Choi J, Cheong K, Ko J, Choi G
. Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biol. 2022; 19(1):373-385.
PMC: 8942408.
DOI: 10.1080/15476286.2022.2043040.
View
15.
Zhang Y, Gao X, Sun M, Liu H, Xu J
. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol. 2017; 19(10):4065-4079.
DOI: 10.1111/1462-2920.13844.
View
16.
Jin L, Li G, Yu D, Huang W, Cheng C, Liao S
. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahliae. BMC Genomics. 2017; 18(1):130.
PMC: 5294800.
DOI: 10.1186/s12864-017-3507-y.
View
17.
Moller S, Croning M, Apweiler R
. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001; 17(7):646-53.
DOI: 10.1093/bioinformatics/17.7.646.
View
18.
Kim D, Paggi J, Park C, Bennett C, Salzberg S
. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37(8):907-915.
PMC: 7605509.
DOI: 10.1038/s41587-019-0201-4.
View
19.
Gallego-Paez L, Bordone M, Leote A, Saraiva-Agostinho N, Ascensao-Ferreira M, Barbosa-Morais N
. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet. 2017; 136(9):1015-1042.
PMC: 5602094.
DOI: 10.1007/s00439-017-1790-y.
View
20.
Carrasco J, Rauer M, Hummel B, Grzejda D, Alfonso-Gonzalez C, Lee Y
. ELAV and FNE Determine Neuronal Transcript Signatures through EXon-Activated Rescue. Mol Cell. 2020; 80(1):156-163.e6.
DOI: 10.1016/j.molcel.2020.09.011.
View