6.
Moya B, Bhagwat S, Cabot G, Bou G, Patel M, Oliver A
. Effective inhibition of PBPs by cefepime and zidebactam in the presence of VIM-1 drives potent bactericidal activity against MBL-expressing Pseudomonas aeruginosa. J Antimicrob Chemother. 2020; 75(6):1474-1478.
DOI: 10.1093/jac/dkaa036.
View
7.
Huang Z, Yang X, Jin Y, Yu J, Cao G, Wang J
. First-in-human study to evaluate the safety, tolerability, and population pharmacokinetic/pharmacodynamic target attainment analysis of FL058 alone and in combination with meropenem in healthy subjects. Antimicrob Agents Chemother. 2023; 68(1):e0133023.
PMC: 10777830.
DOI: 10.1128/aac.01330-23.
View
8.
Lomovskaya O, Tsivkovski R, Totrov M, Dressel D, Castanheira M, Dudley M
. New boronate drugs and evolving NDM-mediated beta-lactam resistance. Antimicrob Agents Chemother. 2023; 67(9):e0057923.
PMC: 10508144.
DOI: 10.1128/aac.00579-23.
View
9.
Rodvold K, Gotfried M, Chugh R, Gupta M, Patel A, Chavan R
. Plasma and Intrapulmonary Concentrations of Cefepime and Zidebactam following Intravenous Administration of WCK 5222 to Healthy Adult Subjects. Antimicrob Agents Chemother. 2018; 62(8).
PMC: 6105785.
DOI: 10.1128/AAC.00682-18.
View
10.
Tamma P, Heil E, Justo J, Mathers A, Satlin M, Bonomo R
. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin Infect Dis. 2024; .
DOI: 10.1093/cid/ciae403.
View
11.
cerniauskiene K, Dambrauskiene A, Vitkauskiene A
. Associations between -Lactamase Types of and Antimicrobial Resistance. Medicina (Kaunas). 2023; 59(8).
PMC: 10456718.
DOI: 10.3390/medicina59081386.
View
12.
Pais G, Chang J, Barreto E, Stitt G, Downes K, Alshaer M
. Clinical Pharmacokinetics and Pharmacodynamics of Cefepime. Clin Pharmacokinet. 2022; 61(7):929-953.
PMC: 9345683.
DOI: 10.1007/s40262-022-01137-y.
View
13.
Tirlangi P, Wanve B, Dubbudu R, Yadav B, Kumar L, Gupta A
. Successful Use of Cefepime-Zidebactam (WCK 5222) as a Salvage Therapy for the Treatment of Disseminated Extensively Drug-Resistant New Delhi Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Infection in an Adult Patient with Acute T-Cell.... Antimicrob Agents Chemother. 2023; 67(8):e0050023.
PMC: 10433839.
DOI: 10.1128/aac.00500-23.
View
14.
Yahav D, Giske C, Gramatniece A, Abodakpi H, Tam V, Leibovici L
. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev. 2020; 34(1).
PMC: 7667665.
DOI: 10.1128/CMR.00115-20.
View
15.
Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P
. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria?. GMS Hyg Infect Control. 2017; 12:Doc05.
PMC: 5388835.
DOI: 10.3205/dgkh000290.
View
16.
Moya B, Barcelo I, Bhagwat S, Patel M, Bou G, Papp-Wallace K
. WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent "β-Lactam Enhancer" Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones. Antimicrob Agents Chemother. 2017; 61(6).
PMC: 5444176.
DOI: 10.1128/AAC.02529-16.
View
17.
Mojica M, Rossi M, Vila A, Bonomo R
. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2021; 22(1):e28-e34.
PMC: 8266270.
DOI: 10.1016/S1473-3099(20)30868-9.
View
18.
Poudel A, Zhu S, Cooper N, Little P, Tarrant C, Hickman M
. The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS One. 2023; 18(5):e0285170.
PMC: 10166566.
DOI: 10.1371/journal.pone.0285170.
View
19.
Livermore D, Mushtaq S, Warner M, Vickers A, Woodford N
. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob Chemother. 2017; 72(5):1373-1385.
DOI: 10.1093/jac/dkw593.
View
20.
Almarzoky Abuhussain S, Avery L, Abdelraouf K, Nicolau D
. Efficacy of Humanized WCK 5222 (Cefepime-Zidebactam) Exposures against Carbapenem-Resistant Acinetobacter baumannii in the Neutropenic Thigh Model. Antimicrob Agents Chemother. 2018; 63(1).
PMC: 6325183.
DOI: 10.1128/AAC.01931-18.
View