6.
Szadeczky-Kardoss I, Szaker H, Verma R, Darko E, Pettko-Szandtner A, Silhavy D
. Elongation factor TFIIS is essential for heat stress adaptation in plants. Nucleic Acids Res. 2022; 50(4):1927-1950.
PMC: 8886746.
DOI: 10.1093/nar/gkac020.
View
7.
Malabarba J, Windels D, Xu W, Verdier J
. Regulation of DNA (de)Methylation Positively Impacts Seed Germination during Seed Development under Heat Stress. Genes (Basel). 2021; 12(3).
PMC: 8005211.
DOI: 10.3390/genes12030457.
View
8.
Ventura L, Giovannini A, Savio M, Dona M, Macovei A, Buttafava A
. Single Cell Gel Electrophoresis (Comet) assay with plants: research on DNA repair and ecogenotoxicity testing. Chemosphere. 2013; 92(1):1-9.
DOI: 10.1016/j.chemosphere.2013.03.006.
View
9.
Bakala H, Devi J, Singh G, Singh I
. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement. Planta. 2024; 259(5):123.
DOI: 10.1007/s00425-024-04401-6.
View
10.
Cullis C, Kunert K
. Unlocking the potential of orphan legumes. J Exp Bot. 2016; 68(8):1895-1903.
DOI: 10.1093/jxb/erw437.
View
11.
Kompas T, Che T, Grafton R
. Global impacts of heat and water stress on food production and severe food insecurity. Sci Rep. 2024; 14(1):14398.
PMC: 11193756.
DOI: 10.1038/s41598-024-65274-z.
View
12.
Siebers M, Yendrek C, Drag D, Locke A, Rios Acosta L, Leakey A
. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob Chang Biol. 2015; 21(8):3114-25.
DOI: 10.1111/gcb.12935.
View
13.
Assaad H, Hou Y, Zhou L, Carroll R, Wu G
. Rapid publication-ready MS-Word tables for two-way ANOVA. Springerplus. 2015; 4:33.
PMC: 4305362.
DOI: 10.1186/s40064-015-0795-z.
View
14.
Yu E, Fan C, Yang Q, Li X, Wan B, Dong Y
. Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PLoS One. 2014; 9(7):e101914.
PMC: 4094393.
DOI: 10.1371/journal.pone.0101914.
View
15.
Pazzaglia J, Badalamenti F, Bernardeau-Esteller J, Ruiz J, Giacalone V, Procaccini G
. Thermo-priming increases heat-stress tolerance in seedlings of the Mediterranean seagrass P. oceanica. Mar Pollut Bull. 2021; 174:113164.
DOI: 10.1016/j.marpolbul.2021.113164.
View
16.
Sakai Y, Suriyasak C, Inoue M, Hamaoka N, Ishibashi Y
. Heat stress during grain filling regulates seed germination through alterations of DNA methylation in barley (Hordeum vulgare L.). Plant Mol Biol. 2022; 110(4-5):325-332.
DOI: 10.1007/s11103-022-01278-5.
View
17.
Bhardwaj A, Sita K, Sehgal A, Bhandari K, Kumar S, Prasad P
. Heat Priming of Lentil ( Medik.) Seeds and Foliar Treatment with γ-Aminobutyric Acid (GABA), Confers Protection to Reproductive Function and Yield Traits under High-Temperature Stress Environments. Int J Mol Sci. 2021; 22(11).
PMC: 8197853.
DOI: 10.3390/ijms22115825.
View
18.
Fabrissin I, Sano N, Seo M, North H
. Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off?. J Exp Bot. 2021; 72(7):2312-2333.
DOI: 10.1093/jxb/erab004.
View
19.
Ebeed H
. Genome-wide analysis of polyamine biosynthesis genes in wheat reveals gene expression specificity and involvement of STRE and MYB-elements in regulating polyamines under drought. BMC Genomics. 2022; 23(1):734.
PMC: 9618216.
DOI: 10.1186/s12864-022-08946-2.
View
20.
Dundar G, Ramirez V, Poppenberger B
. The heat shock response of plants: new insights into modes of perception and signaling and how hormones contribute. J Exp Bot. 2024; .
DOI: 10.1093/jxb/erae419.
View