6.
Loh J, Adenwalla N, Wiles S, Proft T
. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence. 2013; 4(5):419-28.
PMC: 3714134.
DOI: 10.4161/viru.24930.
View
7.
Andrade M, Oliveira K, Morais C, Abrantes P, Pomba C, Rosato A
. Virulence Potential of Biofilm-Producing , and Causing Skin Infections in Companion Animals. Antibiotics (Basel). 2022; 11(10).
PMC: 9598800.
DOI: 10.3390/antibiotics11101339.
View
8.
Jorjao A, Oliveira L, Scorzoni L, Figueiredo-Godoi L, Prata M, Jorge A
. From moths to caterpillars: Ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence. 2017; 9(1):383-389.
PMC: 5955185.
DOI: 10.1080/21505594.2017.1397871.
View
9.
Otto M
. Staphylococcal Biofilms. Microbiol Spectr. 2018; 6(4).
PMC: 6282163.
DOI: 10.1128/microbiolspec.GPP3-0023-2018.
View
10.
Piatek M, Sheehan G, Kavanagh K
. : The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics (Basel). 2021; 10(12).
PMC: 8698334.
DOI: 10.3390/antibiotics10121545.
View
11.
Schindler B, Kaatz G
. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist Updat. 2016; 27:1-13.
DOI: 10.1016/j.drup.2016.04.003.
View
12.
Turner N, Sharma-Kuinkel B, Maskarinec S, Eichenberger E, Shah P, Carugati M
. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019; 17(4):203-218.
PMC: 6939889.
DOI: 10.1038/s41579-018-0147-4.
View
13.
Sheehan G, Dixon A, Kavanagh K
. Utilization of Galleria mellonella larvae to characterize the development of Staphylococcus aureus infection. Microbiology (Reading). 2019; 165(8):863-875.
DOI: 10.1099/mic.0.000813.
View
14.
Costa S, Lopes E, Azzali E, Machado D, Coelho T, da Silva P
. An Experimental Model for the Rapid Screening of Compounds with Potential Use Against Mycobacteria. Assay Drug Dev Technol. 2016; 14(9):524-534.
DOI: 10.1089/adt.2016.752.
View
15.
Kosmidis C, Schindler B, Jacinto P, Patel D, Bains K, Seo S
. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int J Antimicrob Agents. 2012; 40(3):204-9.
DOI: 10.1016/j.ijantimicag.2012.04.014.
View
16.
Alav I, Sutton J, Rahman K
. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018; 73(8):2003-2020.
DOI: 10.1093/jac/dky042.
View
17.
Knox C, Wilson M, Klinger C, Franklin M, Oler E, Wilson A
. DrugBank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2023; 52(D1):D1265-D1275.
PMC: 10767804.
DOI: 10.1093/nar/gkad976.
View
18.
Suay-Garcia B, Aleman-Lopez P, Bueso-Bordils J, Falco A, Anton-Fos G, Perez-Gracia M
. New solvent options for assays in the larvae model. Virulence. 2019; 10(1):776-782.
PMC: 6735471.
DOI: 10.1080/21505594.2019.1659663.
View
19.
Garrine M, Andrade M, Neves J, Mandomando I, Couto I, Costa S
. Exploring the virulence potential of Staphylococcus aureus CC121 and CC152 lineages related to paediatric community-acquired bacteraemia in Manhiça, Mozambique. Sci Rep. 2024; 14(1):10758.
PMC: 11087594.
DOI: 10.1038/s41598-024-61345-3.
View
20.
Zhang G, Liu X, Zhang S, Pan B, Liu M
. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem. 2018; 146:599-612.
DOI: 10.1016/j.ejmech.2018.01.078.
View