6.
Jung J, Kwon S, Sung J, Bae H, Kang M, Jose J
. Screened Fv-Antibodies against the Angiotensin-Converting Enzyme 2 (ACE2) Receptor Neutralizing the Infection of SARS-CoV-2. ACS Pharmacol Transl Sci. 2024; 7(12):3914-3920.
PMC: 11651164.
DOI: 10.1021/acsptsci.4c00441.
View
7.
Chen M, Zhang X
. Construction and applications of SARS-CoV-2 pseudoviruses: a mini review. Int J Biol Sci. 2021; 17(6):1574-1580.
PMC: 8071765.
DOI: 10.7150/ijbs.59184.
View
8.
Jung J, Bong J, Lee S, Kim M, Sung J, Lee M
. Screening of Fv Antibodies with Specific Binding Activities to Monosodium Urate and Calcium Pyrophosphate Dihydrate Crystals for the Diagnosis of Gout and Pseudogout. ACS Appl Bio Mater. 2022; 4(4):3388-3397.
DOI: 10.1021/acsabm.0c01680.
View
9.
Fraser B, Beldar S, Seitova A, Hutchinson A, Mannar D, Li Y
. Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nat Chem Biol. 2022; 18(9):963-971.
DOI: 10.1038/s41589-022-01059-7.
View
10.
Sung J, Bong J, Lee S, Jung J, Kang M, Lee M
. One-step immunoassay for food allergens based on screened mimotopes from autodisplayed F-antibody library. Biosens Bioelectron. 2022; 202:113976.
DOI: 10.1016/j.bios.2022.113976.
View
11.
Xu J, Davis M
. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity. 2000; 13(1):37-45.
DOI: 10.1016/s1074-7613(00)00006-6.
View
12.
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S
. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581(7807):215-220.
DOI: 10.1038/s41586-020-2180-5.
View
13.
Hristova S, Zhivkov A
. Omicron Coronavirus: pH-Dependent Electrostatic Potential and Energy of Association of Spike Protein to ACE2 Receptor. Viruses. 2023; 15(8).
PMC: 10460073.
DOI: 10.3390/v15081752.
View
14.
McCallum M, Park Y, Stewart C, Sprouse K, Addetia A, Brown J
. Human coronavirus HKU1 recognition of the TMPRSS2 host receptor. Cell. 2024; 187(16):4231-4245.e13.
DOI: 10.1016/j.cell.2024.06.006.
View
15.
DAngelo S, Ferrara F, Naranjo L, Erasmus M, Hraber P, Bradbury A
. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Front Immunol. 2018; 9:395.
PMC: 5852061.
DOI: 10.3389/fimmu.2018.00395.
View
16.
Zahradnik J, Marciano S, Shemesh M, Zoler E, Harari D, Chiaravalli J
. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat Microbiol. 2021; 6(9):1188-1198.
DOI: 10.1038/s41564-021-00954-4.
View
17.
Pedelacq J, Cabantous S, Tran T, Terwilliger T, Waldo G
. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol. 2005; 24(1):79-88.
DOI: 10.1038/nbt1172.
View
18.
Qi X, Ke B, Feng Q, Yang D, Lian Q, Li Z
. Construction and immunogenic studies of a mFc fusion receptor binding domain (RBD) of spike protein as a subunit vaccine against SARS-CoV-2 infection. Chem Commun (Camb). 2020; 56(61):8683-8686.
DOI: 10.1039/d0cc03263h.
View
19.
Salleh M, Deris Z
. Molecular Characterization of Human TMPRSS2 Protease Polymorphic Variants and Associated SARS-CoV-2 Susceptibility. Life (Basel). 2022; 12(2).
PMC: 8876804.
DOI: 10.3390/life12020231.
View
20.
Yoo G, Saenger T, Bong J, Jose J, Kang M, Pyun J
. Co-autodisplay of Z-domains and bovine caseins on the outer membrane of E. coli. Biochim Biophys Acta. 2015; 1848(12):3126-33.
DOI: 10.1016/j.bbamem.2015.09.018.
View