The Telomere-to-telomere Genome of Flowering Cherry (Prunus Campanulata) Reveals Genomic Evolution of the Subgenus Cerasus
Overview
Affiliations
Background: Prunus campanulata, a species of ornamental cherry, holds significant genetic and horticultural value. Despite the availability of various cherry genomes, a fully resolved telomere-to-telomere (T2T) assembly for this species has been lacking. Recent advancements in long-read sequencing technologies have made it possible to generate gap-free genome assemblies, providing comprehensive insights into genomic structures that were previously inaccessible.
Findings: We present the first T2T genome assembly for P. campanulata "Lianmeiren" (v2.0), achieved through the integration of PacBio HiFi, ultra-long Oxford Nanopore Technologies, Illumina, and Hi-C sequencing. The assembly resulted in a highly contiguous genome with a total size of 266.23 Mb and a contig N50 of 31.6 Mb. The genome exhibits remarkable completeness (98.9% BUSCO) and high accuracy (quality value of 48.75). Additionally, 13 telomeres and putative centromere regions were successfully identified across the 8 pseudochromosomes. Comparative analysis with the previous v1.0 assembly revealed 336,943 single nucleotide polymorphisms, 107,521 indels, and 1,413 structural variations, along with the annotation of 1,402 new genes.
Conclusions: This T2T genome assembly of P. campanulata "Lianmeiren" provides a critical reference for understanding the genetic architecture of the species. It enhances our ability to study structural variations, gene function, and evolutionary biology within the Prunus genus.