6.
Baker M, Mara M, Yan J, Hodgson K, Hedman B, Solomon E
. K- and L-edge X-ray Absorption Spectroscopy (XAS) and Resonant Inelastic X-ray Scattering (RIXS) Determination of Differential Orbital Covalency (DOC) of Transition Metal Sites. Coord Chem Rev. 2017; 345:182-208.
PMC: 5621773.
DOI: 10.1016/j.ccr.2017.02.004.
View
7.
Semivrazhskaya O, Salionov D, Clark A, Casati N, Nachtegaal M, Ranocchiari M
. Deciphering the Mechanism of Crystallization of UiO-66 Metal-Organic Framework. Small. 2023; 19(52):e2305771.
DOI: 10.1002/smll.202305771.
View
8.
Shoaee M, Anderson M, Attfield M
. Crystal growth of the nanoporous metal-organic framework HKUST-1 revealed by in situ atomic force microscopy. Angew Chem Int Ed Engl. 2008; 47(44):8525-8.
DOI: 10.1002/anie.200803460.
View
9.
Sang X, Zhang J, Xiang J, Cui J, Zheng L, Zhang J
. Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks. Nat Commun. 2017; 8(1):175.
PMC: 5539316.
DOI: 10.1038/s41467-017-00226-y.
View
10.
Zhao J, Nunn W, Lemaire P, Lin Y, Dickey M, Oldham C
. Facile Conversion of Hydroxy Double Salts to Metal-Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates. J Am Chem Soc. 2015; 137(43):13756-9.
DOI: 10.1021/jacs.5b08752.
View
11.
Stock N, Biswas S
. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2011; 112(2):933-69.
DOI: 10.1021/cr200304e.
View
12.
Ragon F, Horcajada P, Chevreau H, Kyu Hwang Y, Lee U, Miller S
. In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66. Inorg Chem. 2014; 53(5):2491-500.
DOI: 10.1021/ic402514n.
View
13.
Stavitski E, Goesten M, Juan-Alcaniz J, Martinez-Joaristi A, Serra-Crespo P, Petukhov A
. Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. Angew Chem Int Ed Engl. 2011; 50(41):9624-8.
DOI: 10.1002/anie.201101757.
View
14.
Cravillon J, Schroder C, Nayuk R, Gummel J, Huber K, Wiebcke M
. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew Chem Int Ed Engl. 2011; 50(35):8067-71.
DOI: 10.1002/anie.201102071.
View
15.
Guilherme Buzanich A, Kulow A, Kabelitz A, Grunewald C, Seidel R, Chapartegui-Arias A
. Observation of early ZIF-8 crystallization stages with X-ray absorption spectroscopy. Soft Matter. 2020; 17(2):331-334.
DOI: 10.1039/d0sm01356k.
View
16.
Goesten M, Stavitski E, Pidko E, Gucuyener C, Boshuizen B, Ehrlich S
. The molecular pathway to ZIF-7 microrods revealed by in situ time-resolved small- and wide-angle X-ray scattering, quick-scanning extended X-ray absorption spectroscopy, and DFT calculations. Chemistry. 2013; 19(24):7809-16.
DOI: 10.1002/chem.201204638.
View
17.
Guan D, Zhang K, Hu Z, Wu X, Chen J, Pao C
. Exceptionally Robust Face-Sharing Motifs Enable Efficient and Durable Water Oxidation. Adv Mater. 2021; 33(41):e2103392.
DOI: 10.1002/adma.202103392.
View
18.
Wu Y, Henke S, Kieslich G, Schwedler I, Yang M, Fraser D
. Time-Resolved In Situ X-ray Diffraction Reveals Metal-Dependent Metal-Organic Framework Formation. Angew Chem Int Ed Engl. 2016; 55(45):14081-14084.
DOI: 10.1002/anie.201608463.
View
19.
Patterson J, Abellan P, Denny Jr M, Park C, Browning N, Cohen S
. Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. J Am Chem Soc. 2015; 137(23):7322-8.
DOI: 10.1021/jacs.5b00817.
View