6.
Chua W, Rusli K, Aitken L
. Early warning scores for sepsis identification and prediction of in-hospital mortality in adults with sepsis: A systematic review and meta-analysis. J Clin Nurs. 2024; 33(6):2005-2018.
DOI: 10.1111/jocn.17061.
View
7.
Sartelli M, Kluger Y, Ansaloni L, Hardcastle T, Rello J, Watkins R
. Raising concerns about the Sepsis-3 definitions. World J Emerg Surg. 2018; 13:6.
PMC: 5784683.
DOI: 10.1186/s13017-018-0165-6.
View
8.
Fleuren L, Klausch T, Zwager C, Schoonmade L, Guo T, Roggeveen L
. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 2020; 46(3):383-400.
PMC: 7067741.
DOI: 10.1007/s00134-019-05872-y.
View
9.
Persson I, Macura A, Becedas D, Sjovall F
. Early prediction of sepsis in intensive care patients using the machine learning algorithm NAVOY® Sepsis, a prospective randomized clinical validation study. J Crit Care. 2024; 80:154400.
DOI: 10.1016/j.jcrc.2023.154400.
View
10.
Shimabukuro D, Barton C, Feldman M, Mataraso S, Das R
. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res. 2018; 4(1):e000234.
PMC: 5687546.
DOI: 10.1136/bmjresp-2017-000234.
View
11.
Taneja I, Damhorst G, Lopez-Espina C, Zhao S, Zhu R, Khan S
. Diagnostic and prognostic capabilities of a biomarker and EMR-based machine learning algorithm for sepsis. Clin Transl Sci. 2021; 14(4):1578-1589.
PMC: 8301583.
DOI: 10.1111/cts.13030.
View
12.
Subbe C, Kruger M, Rutherford P, Gemmel L
. Validation of a modified Early Warning Score in medical admissions. QJM. 2001; 94(10):521-6.
DOI: 10.1093/qjmed/94.10.521.
View
13.
Burdick H, Pino E, Gabel-Comeau D, McCoy A, Gu C, Roberts J
. Effect of a sepsis prediction algorithm on patient mortality, length of stay and readmission: a prospective multicentre clinical outcomes evaluation of real-world patient data from US hospitals. BMJ Health Care Inform. 2020; 27(1).
PMC: 7245419.
DOI: 10.1136/bmjhci-2019-100109.
View
14.
McCoy A, Das R
. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual. 2018; 6(2):e000158.
PMC: 5699136.
DOI: 10.1136/bmjoq-2017-000158.
View
15.
Singer M, Deutschman C, Seymour C, Shankar-Hari M, Annane D, Bauer M
. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8):801-10.
PMC: 4968574.
DOI: 10.1001/jama.2016.0287.
View
16.
Theodosiou A, Read R
. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. J Infect. 2023; 87(4):287-294.
DOI: 10.1016/j.jinf.2023.07.006.
View
17.
Berg D, Gerlach H
. Recent advances in understanding and managing sepsis. F1000Res. 2018; 7.
PMC: 6173111.
DOI: 10.12688/f1000research.15758.1.
View
18.
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith C, French C
. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47(11):1181-1247.
PMC: 8486643.
DOI: 10.1007/s00134-021-06506-y.
View
19.
Sabir L, Ramlakhan S, Goodacre S
. Comparison of qSOFA and Hospital Early Warning Scores for prognosis in suspected sepsis in emergency department patients: a systematic review. Emerg Med J. 2021; 39(4):284-294.
DOI: 10.1136/emermed-2020-210416.
View
20.
Wulff A, Montag S, Marschollek M, Jack T
. Clinical Decision-Support Systems for Detection of Systemic Inflammatory Response Syndrome, Sepsis, and Septic Shock in Critically Ill Patients: A Systematic Review. Methods Inf Med. 2019; 58(S 02):e43-e57.
DOI: 10.1055/s-0039-1695717.
View