6.
Chen F, Lukat P, Iqbal A, Saile K, Kaever V, van den Heuvel J
. Crystal structure of -aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis. Proc Natl Acad Sci U S A. 2019; 116(41):20644-20654.
PMC: 6789909.
DOI: 10.1073/pnas.1908770116.
View
7.
Chen F, Yalcin I, Zhao M, Chen C, Blankenfeldt W, Pessler F
. Amino acid positions near the active site determine the reduced activity of human ACOD1 compared to murine ACOD1. Sci Rep. 2023; 13(1):10360.
PMC: 10293213.
DOI: 10.1038/s41598-023-37373-w.
View
8.
Chen F, Elgaher W, Winterhoff M, Bussow K, Waqas F, Graner E
. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat Metab. 2022; 4(5):534-546.
PMC: 9170585.
DOI: 10.1038/s42255-022-00577-x.
View
9.
Bentley R, THIESSEN C
. Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J Biol Chem. 1957; 226(2):703-20.
View
10.
Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M
. Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng. 2005; 94(1):29-33.
DOI: 10.1263/jbb.94.29.
View
11.
Varadi M, Bertoni D, Magana P, Paramval U, Pidruchna I, Radhakrishnan M
. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2023; 52(D1):D368-D375.
PMC: 10767828.
DOI: 10.1093/nar/gkad1011.
View
11.
Sun P, Zhang Z, Wang B, Liu C, Chen C, Liu P
. A genetically encoded fluorescent biosensor for detecting itaconate with subcellular resolution in living macrophages. Nat Commun. 2022; 13(1):6562.
PMC: 9636186.
DOI: 10.1038/s41467-022-34306-5.
View
12.
Dixon M
. The effect of pH on the affinities of enzymes for substrates and inhibitors. Biochem J. 1953; 55(1):161-70.
PMC: 1269151.
DOI: 10.1042/bj0550161.
View
13.
Chen M, Sun H, Boot M, Shao L, Chang S, Wang W
. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against . Science. 2020; 369(6502):450-455.
PMC: 8020367.
DOI: 10.1126/science.aaz1333.
View
14.
Lian H, Park D, Chen M, Schueder F, Lara-Tejero M, Liu J
. Parkinson's disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular Salmonella. Nat Microbiol. 2023; 8(10):1880-1895.
PMC: 10962312.
DOI: 10.1038/s41564-023-01459-y.
View
15.
Li T, Huo L, Pulley C, Liu A
. Decarboxylation mechanisms in biological system. Bioorg Chem. 2012; 43:2-14.
DOI: 10.1016/j.bioorg.2012.03.001.
View
16.
Santo-Domingo J, Demaurex N
. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. J Gen Physiol. 2012; 139(6):415-23.
PMC: 3362525.
DOI: 10.1085/jgp.201110767.
View
16.
Walsh C
. Biologically generated carbon dioxide: nature's versatile chemical strategies for carboxy lyases. Nat Prod Rep. 2019; 37(1):100-135.
DOI: 10.1039/c9np00015a.
View
17.
Hashidoko Y, Tahara S
. Stereochemically specific proton transfer in decarboxylation of 4-hydroxycinnamic acids by 4-hydroxycinnamate decarboxylase from Klebsiella oxytoca. Arch Biochem Biophys. 1998; 359(2):225-30.
DOI: 10.1006/abbi.1998.0911.
View
18.
Rodriguez H, Angulo I, de Las Rivas B, Campillo N, Paez J, Munoz R
. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism. Proteins. 2010; 78(7):1662-76.
DOI: 10.1002/prot.22684.
View