Digital Technologies and Performance Incentives: Evidence from Businesses in the Swiss Economy
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Supplementary Information: The online version contains supplementary material available at 10.1186/s41937-024-00132-3.
References
1.
Cole S, Hernan M
. Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008; 168(6):656-64.
PMC: 2732954.
DOI: 10.1093/aje/kwn164.
View
2.
Hashimoto Y, Yasunaga H
. Theory and practice of propensity score analysis. Ann Clin Epidemiol. 2024; 4(4):101-109.
PMC: 10760486.
DOI: 10.37737/ace.22013.
View
3.
Sturmer T, Rothman K, Avorn J, Glynn R
. Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distribution--a simulation study. Am J Epidemiol. 2010; 172(7):843-54.
PMC: 3025652.
DOI: 10.1093/aje/kwq198.
View
4.
Abdia Y, Kulasekera K, Datta S, Boakye M, Kong M
. Propensity scores based methods for estimating average treatment effect and average treatment effect among treated: A comparative study. Biom J. 2017; 59(5):967-985.
DOI: 10.1002/bimj.201600094.
View
5.
Lee B, Lessler J, Stuart E
. Weight trimming and propensity score weighting. PLoS One. 2011; 6(3):e18174.
PMC: 3069059.
DOI: 10.1371/journal.pone.0018174.
View