Histone Deacetylase-1 is Required for Epigenome Stability in
Overview
Authors
Affiliations
Polycomb group (PcG) proteins form chromatin modifying complexes that stably repress lineage- or context-specific genes in animals, plants, and some fungi. Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) to assemble repressive chromatin. In the model fungus , H3K27me3 deposition is controlled by the H3K36 methyltransferase ASH1 and components of constitutive heterochromatin including the H3K9me3-binding protein HETEROCHROMATIN PROTEIN 1 (HP1). Hypoacetylated histones are a defining feature of both constitutive heterochromatin and PcG-repressed chromatin, but how histone deacetylases (HDACs) contribute to normal H3K27me3 and transcriptional repression within PcG-repressed chromatin is poorly understood. We performed a genetic screen to identify HDACs required for repression of PRC2-methylated genes. In the absence of HISTONE DEACETYLASE-1 (HDA-1), PRC2-methylated genes were activated and H3K27me3 was depleted from typical PRC2-targeted regions. At constitutive heterochromatin, HDA-1 deficient cells displayed reduced H3K9me3, hyperacetylation, and aberrant enrichment of H3K27me3 and H3K36me3. CHROMODOMAIN PROTEIN-2 (CDP-2) is required to target HDA-1 to constitutive heterochromatin and was also required for normal H3K27me3 patterns. Patterns of aberrant H3K27me3 were distinct in isogenic Δ- strains, suggesting that loss of HDA-1 causes stochastic or progressive epigenome dysfunction. To test this, we constructed a new Δ- strain and performed a laboratory evolution experiment. Deletion of - led to progressive epigenome decay over hundreds of nuclear divisions. Together, our data indicate that HDA-1 is a critical regulator of epigenome stability in .