6.
Zheng L, Baumann U, Reymond J
. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 2004; 32(14):e115.
PMC: 514394.
DOI: 10.1093/nar/gnh110.
View
7.
Harth G, Clemens D, Horwitz M
. Glutamine synthetase of Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity. Proc Natl Acad Sci U S A. 1994; 91(20):9342-6.
PMC: 44808.
DOI: 10.1073/pnas.91.20.9342.
View
8.
Gill H, Pfluegl G, Eisenberg D
. Multicopy crystallographic refinement of a relaxed glutamine synthetase from Mycobacterium tuberculosis highlights flexible loops in the enzymatic mechanism and its regulation. Biochemistry. 2002; 41(31):9863-72.
DOI: 10.1021/bi020254s.
View
9.
Krysenko S, Okoniewski N, Kulik A, Matthews A, Grimpo J, Wohlleben W
. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in M145. Front Microbiol. 2017; 8:726.
PMC: 5403932.
DOI: 10.3389/fmicb.2017.00726.
View
10.
Harth G, Maslesa-Galic S, Tullius M, Horwitz M
. All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol Microbiol. 2005; 58(4):1157-72.
DOI: 10.1111/j.1365-2958.2005.04899.x.
View
11.
Forouhar F, Lee I, Vujcic J, Vujcic S, Shen J, Vorobiev S
. Structural and functional evidence for Bacillus subtilis PaiA as a novel N1-spermidine/spermine acetyltransferase. J Biol Chem. 2005; 280(48):40328-36.
DOI: 10.1074/jbc.M505332200.
View
12.
Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I
. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology (Reading). 2009; 155(Pt 4):1332-1339.
DOI: 10.1099/mic.0.023275-0.
View
13.
Li H, Durbin R
. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60.
PMC: 2705234.
DOI: 10.1093/bioinformatics/btp324.
View
14.
Sassetti C, Boyd D, Rubin E
. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003; 48(1):77-84.
DOI: 10.1046/j.1365-2958.2003.03425.x.
View
15.
Foster A, Barnes N, Speight R, Keane M
. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway. Syst Appl Microbiol. 2013; 36(7):457-66.
DOI: 10.1016/j.syapm.2013.06.008.
View
16.
Liao Y, Smyth G, Shi W
. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013; 30(7):923-30.
DOI: 10.1093/bioinformatics/btt656.
View
17.
Palomino J, Martin A, Camacho M, Guerra H, Swings J, Portaels F
. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002; 46(8):2720-2.
PMC: 127336.
DOI: 10.1128/AAC.46.8.2720-2722.2002.
View
18.
Hirsch J, DUBOS R
. The effect of spermine on tubercle bacilli. J Exp Med. 1952; 95(2):191-208.
PMC: 2212060.
DOI: 10.1084/jem.95.2.191.
View
19.
Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair A, Sharma U
. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother. 2012; 56(5):2643-51.
PMC: 3346595.
DOI: 10.1128/AAC.06003-11.
View
20.
Joshi G, Spontak J, Klapper D, Richardson A
. Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol. 2011; 82(1):9-20.
PMC: 3183340.
DOI: 10.1111/j.1365-2958.2011.07809.x.
View