6.
Anker S, Butler J, Filippatos G, Ferreira J, Bocchi E, Bohm M
. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021; 385(16):1451-1461.
DOI: 10.1056/NEJMoa2107038.
View
7.
Solomon S, McMurray J, Claggett B, de Boer R, DeMets D, Hernandez A
. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 2022; 387(12):1089-1098.
DOI: 10.1056/NEJMoa2206286.
View
8.
Jhund P, Kondo T, Butt J, Docherty K, Claggett B, Desai A
. Dapagliflozin across the range of ejection fraction in patients with heart failure: a patient-level, pooled meta-analysis of DAPA-HF and DELIVER. Nat Med. 2022; 28(9):1956-1964.
PMC: 9499855.
DOI: 10.1038/s41591-022-01971-4.
View
9.
Butler J, Packer M, Filippatos G, Ferreira J, Zeller C, Schnee J
. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur Heart J. 2021; 43(5):416-426.
PMC: 8825259.
DOI: 10.1093/eurheartj/ehab798.
View
10.
Hsiao F, Lin C, Tung Y, Chang P, McMurray J, Chu P
. Combining sodium-glucose cotransporter 2 inhibitors and angiotensin receptor-neprilysin inhibitors in heart failure patients with reduced ejection fraction and diabetes mellitus: A multi-institutional study. Int J Cardiol. 2021; 330:91-97.
DOI: 10.1016/j.ijcard.2021.02.035.
View
11.
Cowie M, Fisher M
. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020; 17(12):761-772.
DOI: 10.1038/s41569-020-0406-8.
View
12.
Marfella R, Scisciola L, DOnofrio N, Maiello C, Trotta M, Sardu C
. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol Res. 2022; 184:106448.
DOI: 10.1016/j.phrs.2022.106448.
View
13.
Uthman L, Baartscheer A, Schumacher C, Fiolet J, Kuschma M, Hollmann M
. Direct Cardiac Actions of Sodium Glucose Cotransporter 2 Inhibitors Target Pathogenic Mechanisms Underlying Heart Failure in Diabetic Patients. Front Physiol. 2018; 9:1575.
PMC: 6259641.
DOI: 10.3389/fphys.2018.01575.
View
14.
Chen S, Coronel R, Hollmann M, Weber N, Zuurbier C
. Direct cardiac effects of SGLT2 inhibitors. Cardiovasc Diabetol. 2022; 21(1):45.
PMC: 8933888.
DOI: 10.1186/s12933-022-01480-1.
View
15.
Lopaschuk G, Verma S
. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci. 2020; 5(6):632-644.
PMC: 7315190.
DOI: 10.1016/j.jacbts.2020.02.004.
View
16.
Kuo M, Tsai H, Wang S, Chen Y, Yu A, Yu J
. Yulink, predicted from evolutionary analysis, is involved in cardiac function. J Biomed Sci. 2021; 28(1):7.
PMC: 7798328.
DOI: 10.1186/s12929-020-00701-7.
View
17.
Guo H, Yu X, Liu Y, Paik D, Justesen J, Chandy M
. SGLT2 inhibitor ameliorates endothelial dysfunction associated with the common alcohol flushing variant. Sci Transl Med. 2023; 15(680):eabp9952.
PMC: 10297796.
DOI: 10.1126/scitranslmed.abp9952.
View
18.
Tiburcy M, Hudson J, Balfanz P, Schlick S, Meyer T, Chang Liao M
. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation. 2017; 135(19):1832-1847.
PMC: 5501412.
DOI: 10.1161/CIRCULATIONAHA.116.024145.
View
19.
Zhang J, Zhao S, Tu C, Pang P, Zhang M, Wu J
. Protocol to measure contraction, calcium, and action potential in human-induced pluripotent stem cell-derived cardiomyocytes. STAR Protoc. 2021; 2(4):100859.
PMC: 8551496.
DOI: 10.1016/j.xpro.2021.100859.
View
20.
Karakikes I, Ameen M, Termglinchan V, Wu J
. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res. 2015; 117(1):80-8.
PMC: 4546707.
DOI: 10.1161/CIRCRESAHA.117.305365.
View