6.
Wahaab A, Mustafa B, Hameed M, Stevenson N, Anwar M, Liu K
. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses. 2022; 14(1).
PMC: 8781031.
DOI: 10.3390/v14010044.
View
7.
Lescar J, Luo D, Xu T, Sampath A, Pheng Lim S, Canard B
. Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res. 2008; 80(2):94-101.
DOI: 10.1016/j.antiviral.2008.07.001.
View
8.
Geiss B, Stahla H, Hannah A, Gari A, Keenan S
. Focus on flaviviruses: current and future drug targets. Future Med Chem. 2010; 1(2):327-44.
PMC: 2822355.
DOI: 10.4155/fmc.09.27.
View
9.
Rothan H, Abdulrahman A, Sasikumer P, Othman S, Rahman N, Yusof R
. Protegrin-1 inhibits dengue NS2B-NS3 serine protease and viral replication in MK2 cells. J Biomed Biotechnol. 2012; 2012:251482.
PMC: 3470887.
DOI: 10.1155/2012/251482.
View
10.
Rothan H, Han H, Ramasamy T, Othman S, Rahman N, Yusof R
. Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect Dis. 2012; 12:314.
PMC: 3575220.
DOI: 10.1186/1471-2334-12-314.
View
11.
Norazharuddin H, Lai N
. Roles and Prospects of Dengue Virus Non-structural Proteins as Antiviral Targets: An Easy Digest. Malays J Med Sci. 2019; 25(5):6-15.
PMC: 6419879.
DOI: 10.21315/mjms2018.25.5.2.
View
12.
Zandi K, Teoh B, Sam S, Wong P, Mustafa M, AbuBakar S
. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J. 2011; 8:560.
PMC: 3271998.
DOI: 10.1186/1743-422X-8-560.
View
13.
Dang M, Lim L, Roy A, Song J
. Myricetin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting the Active and Locking the Inactive Conformations. ACS Omega. 2022; 7(3):2798-2808.
PMC: 8793048.
DOI: 10.1021/acsomega.1c05569.
View
14.
Walle T
. Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass?. Semin Cancer Biol. 2007; 17(5):354-62.
PMC: 2024817.
DOI: 10.1016/j.semcancer.2007.05.002.
View
15.
Walle T
. Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int J Mol Sci. 2010; 10(11):5002-5019.
PMC: 2808020.
DOI: 10.3390/ijms10115002.
View
16.
Walle U, Walle T
. Bioavailable flavonoids: cytochrome P450-mediated metabolism of methoxyflavones. Drug Metab Dispos. 2007; 35(11):1985-9.
DOI: 10.1124/dmd.107.016782.
View
17.
Ortega J, Serrano M, Suarez A, Baptista J, Pujol F, Cavallaro L
. Antiviral activity of flavonoids present in aerial parts of against Hepatitis B virus, Poliovirus, and Herpes Simplex Virus . EXCLI J. 2019; 18:1037-1048.
PMC: 6868923.
DOI: 10.17179/excli2019-1837.
View
18.
Anusuya S, Gromiha M
. Structural basis of flavonoids as dengue polymerase inhibitors: insights from QSAR and docking studies. J Biomol Struct Dyn. 2017; 37(1):104-115.
DOI: 10.1080/07391102.2017.1419146.
View
19.
Szklarczyk D, Santos A, von Mering C, Jensen L, Bork P, Kuhn M
. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2015; 44(D1):D380-4.
PMC: 4702904.
DOI: 10.1093/nar/gkv1277.
View
20.
Zoete V, Daina A, Bovigny C, Michielin O
. SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening. J Chem Inf Model. 2016; 56(8):1399-404.
DOI: 10.1021/acs.jcim.6b00174.
View