6.
Qiao Y, Wang W, Lu X
. Engineering cyanobacteria as cell factories for direct trehalose production from CO. Metab Eng. 2020; 62:161-171.
DOI: 10.1016/j.ymben.2020.08.014.
View
7.
Wang B, Pugh S, Nielsen D, Zhang W, Meldrum D
. Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng. 2013; 16:68-77.
DOI: 10.1016/j.ymben.2013.01.001.
View
8.
Durall C, Kukil K, Hawkes J, Albergati A, Lindblad P, Lindberg P
. Production of succinate by engineered strains of Synechocystis PCC 6803 overexpressing phosphoenolpyruvate carboxylase and a glyoxylate shunt. Microb Cell Fact. 2021; 20(1):39.
PMC: 7871529.
DOI: 10.1186/s12934-021-01529-y.
View
9.
Chaves J, Melis A
. Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol. 2018; 102(15):6451-6458.
DOI: 10.1007/s00253-018-9093-3.
View
10.
Taylor G, Hitchcock A, Heap J
. Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria. Nucleic Acids Res. 2021; 49(21):e123.
PMC: 8643660.
DOI: 10.1093/nar/gkab791.
View
11.
Nikkanen L, Solymosi D, Jokel M, Allahverdiyeva Y
. Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. Physiol Plant. 2021; 173(2):514-525.
DOI: 10.1111/ppl.13404.
View
12.
Yamamoto C, Toyoshima M, Kitamura S, Ueno Y, Akimoto S, Toya Y
. Estimation of linear and cyclic electron flows in photosynthesis based on C-metabolic flux analysis. J Biosci Bioeng. 2020; 131(3):277-282.
DOI: 10.1016/j.jbiosc.2020.11.002.
View
13.
Battchikova N, Wei L, Du L, Bersanini L, Aro E, Ma W
. Identification of novel Ssl0352 protein (NdhS), essential for efficient operation of cyclic electron transport around photosystem I, in NADPH:plastoquinone oxidoreductase (NDH-1) complexes of Synechocystis sp. PCC 6803. J Biol Chem. 2011; 286(42):36992-7001.
PMC: 3196108.
DOI: 10.1074/jbc.M111.263780.
View
14.
Ozaki H, Ikeuchi M, Ogawa T, Fukuzawa H, Sonoike K
. Large-scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp. PCC 6803: identification of the factors involved in the modulation of photosystem stoichiometry. Plant Cell Physiol. 2007; 48(3):451-8.
DOI: 10.1093/pcp/pcm015.
View
15.
Ogawa T, Harada T, Ozaki H, Sonoike K
. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis. Plant Cell Physiol. 2013; 54(7):1164-71.
DOI: 10.1093/pcp/pct068.
View
16.
Hirokawa Y, Matsuo S, Hamada H, Matsuda F, Hanai T
. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution. Microb Cell Fact. 2017; 16(1):212.
PMC: 5702090.
DOI: 10.1186/s12934-017-0824-4.
View
17.
Yoshikawa K, Toya Y, Shimizu H
. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. Bioprocess Biosyst Eng. 2017; 40(5):791-796.
DOI: 10.1007/s00449-017-1744-8.
View
18.
Toya Y, Shimizu H
. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnol Adv. 2013; 31(6):818-26.
DOI: 10.1016/j.biotechadv.2013.05.002.
View
19.
Grimme L, BOARDMAN N
. Photochemical activities of a particle fraction P 1 obtained rom the green alga Chlorella fusca. Biochem Biophys Res Commun. 1972; 49(6):1617-23.
DOI: 10.1016/0006-291x(72)90527-x.
View
20.
Wada K, Uebayashi K, Toya Y, Putri S, Matsuda F, Fukusaki E
. Effects of n-butanol production on metabolism and the photosystem in Synecococcus elongatus PCC 7942 based on metabolic flux and target proteome analyses. J Gen Appl Microbiol. 2023; 69(4):185-195.
DOI: 10.2323/jgam.2023.03.002.
View