» Articles » PMID: 39799512

NipalsMCIA: Flexible Multi-block Dimensionality Reduction in R Via Nonlinear Iterative Partial Least Squares

Overview
Journal Bioinformatics
Date 2025 Jan 12
PMID 39799512
Authors
Affiliations
Soon will be listed here.
Abstract

Summary: With the increased reliance on multi-omics data for bulk and single-cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Nonlinear Iterative Partial Least Squares. We applied nipalsMCIA to both bulk and single-cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.

Availability And Implementation: nipalsMCIA is available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/nipalsMCIA.html, and includes detailed documentation and application vignettes.

Citing Articles

Putting computational models of immunity to the test - an invited challenge to predict vaccination outcomes.

Shinde P, Willemsen L, Anderson M, Aoki M, Basu S, Burel J bioRxiv. 2024; .

PMID: 39282381 PMC: 11398469. DOI: 10.1101/2024.09.04.611290.

References
1.
Luecken M, Buttner M, Chaichoompu K, Danese A, Interlandi M, Mueller M . Benchmarking atlas-level data integration in single-cell genomics. Nat Methods. 2021; 19(1):41-50. PMC: 8748196. DOI: 10.1038/s41592-021-01336-8. View

2.
Meng C, Zeleznik O, Thallinger G, Kuster B, Gholami A, Culhane A . Dimension reduction techniques for the integrative analysis of multi-omics data. Brief Bioinform. 2016; 17(4):628-41. PMC: 4945831. DOI: 10.1093/bib/bbv108. View

3.
Conesa A, Beck S . Making multi-omics data accessible to researchers. Sci Data. 2019; 6(1):251. PMC: 6823467. DOI: 10.1038/s41597-019-0258-4. View

4.
Meng C, Basunia A, Peters B, Gholami A, Kuster B, Culhane A . MOGSA: Integrative Single Sample Gene-set Analysis of Multiple Omics Data. Mol Cell Proteomics. 2019; 18(8 suppl 1):S153-S168. PMC: 6692785. DOI: 10.1074/mcp.TIR118.001251. View

5.
Mohammadi-Shemirani P, Sood T, Pare G . From 'Omics to Multi-omics Technologies: the Discovery of Novel Causal Mediators. Curr Atheroscler Rep. 2023; 25(2):55-65. PMC: 9807989. DOI: 10.1007/s11883-022-01078-8. View