6.
Yan D, Wang Q, Li Y, Guo M, Guo X, Ouyang C
. Efficacy and economics evaluation of seed rhizome treatment combined with preplant soil fumigation on ginger soilborne disease, plant growth, and yield promotion. J Sci Food Agric. 2021; 102(5):1894-1902.
DOI: 10.1002/jsfa.11526.
View
7.
Karunaratne R, Zhu F
. Physicochemical interactions of maize starch with ferulic acid. Food Chem. 2016; 199:372-9.
DOI: 10.1016/j.foodchem.2015.12.033.
View
8.
Tan J, Li P, Wang W, Cai X, Xue H
. Separation of gallic acid from Cornus officinalis and its interactions with corn starch. Int J Biol Macromol. 2022; 208:390-399.
DOI: 10.1016/j.ijbiomac.2022.03.116.
View
9.
Wang M, Chen J, Chen S, Ye X, Liu D
. Inhibition effect of three common proanthocyanidins from grape seeds, peanut skins and pine barks on maize starch retrogradation. Carbohydr Polym. 2020; 252:117172.
DOI: 10.1016/j.carbpol.2020.117172.
View
10.
Fernandes R, Botrel D, Silva E, Borges S, de Oliveira C, Yoshida M
. Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydr Polym. 2016; 153:133-142.
DOI: 10.1016/j.carbpol.2016.07.096.
View
11.
Zhao D, Zhang K, Guo D, Tong X
. Effect of tea polyphenols on the physicochemical, structural and digestive properties of modified high amylose corn starch. Food Funct. 2023; 14(11):5196-5204.
DOI: 10.1039/d2fo04089a.
View
12.
Junejo S, Wang J, Liu Y, Jia R, Zhou Y, Li S
. Multi-Scale Structures and Functional Properties of Quinoa Starch Extracted by Alkali, Wet-Milling, and Enzymatic Methods. Foods. 2022; 11(17).
PMC: 9455589.
DOI: 10.3390/foods11172625.
View
13.
Huang Y, Liu Q, Yu J, Zhang Q, He C, Han L
. Electron beam irradiation pretreatment enhances the formation of granular starch-phenolics complexes. Food Res Int. 2023; 163:112288.
DOI: 10.1016/j.foodres.2022.112288.
View
14.
Wang L, Wang L, Li Z, Gao Y, Cui S, Wang T
. Diverse effects of rutin and quercetin on the pasting, rheological and structural properties of Tartary buckwheat starch. Food Chem. 2020; 335:127556.
DOI: 10.1016/j.foodchem.2020.127556.
View
15.
Bertoft E, Annor G, Shen X, Rumpagaporn P, Seetharaman K, Hamaker B
. Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohydr Polym. 2016; 140:113-21.
DOI: 10.1016/j.carbpol.2015.12.025.
View
16.
Kim Y, Shin J, Ye S, Kim J, Eom S, Baik M
. Conversion of gingerols to shogaols in ginger (Zingiber officinale roscoe) by puffing. Food Chem. 2024; 452:139425.
DOI: 10.1016/j.foodchem.2024.139425.
View
17.
Li H, Zhai F, Li J, Zhu X, Guo Y, Zhao B
. Physicochemical properties and structure of modified potato starch granules and their complex with tea polyphenols. Int J Biol Macromol. 2020; 166:521-528.
DOI: 10.1016/j.ijbiomac.2020.10.209.
View
18.
Castanha N, Lima D, Matta Junior M, Campanella O, Augusto P
. Combining ozone and ultrasound technologies to modify maize starch. Int J Biol Macromol. 2019; 139:63-74.
DOI: 10.1016/j.ijbiomac.2019.07.161.
View
19.
Sevenou O, Hill S, Farhat I, Mitchell J
. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol. 2003; 31(1-3):79-85.
DOI: 10.1016/s0141-8130(02)00067-3.
View
20.
Mowrey D, Clayson D
. Motion sickness, ginger, and psychophysics. Lancet. 1982; 1(8273):655-7.
DOI: 10.1016/s0140-6736(82)92205-x.
View