6.
Hellman L, Fried M
. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc. 2007; 2(8):1849-61.
PMC: 2757439.
DOI: 10.1038/nprot.2007.249.
View
7.
Del Castillo T, Duque E, Ramos J
. A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol. 2008; 190(7):2331-9.
PMC: 2293218.
DOI: 10.1128/JB.01726-07.
View
8.
Kumar C, Yadav K, Archana G, Naresh Kumar G
. 2-ketogluconic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization. Curr Microbiol. 2013; 67(3):388-94.
DOI: 10.1007/s00284-013-0372-z.
View
9.
Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D
. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J Ind Microbiol Biotechnol. 2005; 32(11-12):651-64.
DOI: 10.1007/s10295-005-0254-x.
View
10.
Kohlstedt M, Wittmann C
. GC-MS-based C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab Eng. 2019; 54:35-53.
DOI: 10.1016/j.ymben.2019.01.008.
View
11.
Fekete R, Miller M, Chattoraj D
. Fluorescently labeled oligonucleotide extension: a rapid and quantitative protocol for primer extension. Biotechniques. 2003; 35(1):90-4, 97-8.
DOI: 10.2144/03351rr01.
View
12.
Sun W, Zhang Q, Li L, Qu M, Zan X, Cui F
. The Functional Characterization of the 6-Phosphogluconate Dehydratase Operon in 2-Ketogluconic Acid Industrial Producing Strain JUIM01. Foods. 2024; 13(21).
PMC: 11544825.
DOI: 10.3390/foods13213444.
View
13.
Swanson B, Hager P, Phibbs Jr P, Ochsner U, Vasil M, Hamood A
. Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1. Mol Microbiol. 2000; 37(3):561-73.
DOI: 10.1046/j.1365-2958.2000.02012.x.
View
14.
Wang D, Sun L, Sun W, Cui F, Gong J, Zhang X
. A Membrane-Bound Gluconate Dehydrogenase from 2-Keto-D-Gluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01: Purification, Characterization, and Gene Identification. Appl Biochem Biotechnol. 2019; 188(4):897-913.
DOI: 10.1007/s12010-019-02951-0.
View
15.
Sun L, Wang D, Sun W, He X, Cui F, Zhang X
. A 2-ketogluconate kinase KguK in Pseudomonas plecoglossicida JUIM01: Enzymatic characterization and its role in 2-keto-d-gluconic acid metabolism. Int J Biol Macromol. 2020; 165(Pt B):2640-2648.
DOI: 10.1016/j.ijbiomac.2020.10.169.
View
16.
Colmer J, Hamood A
. Characterization of ptxS, a Pseudomonas aeruginosa gene which interferes with the effect of the exotoxin A positive regulatory gene, ptxR. Mol Gen Genet. 1998; 258(3):250-9.
DOI: 10.1007/s004380050729.
View
17.
Latrach Tlemcani L, Corroler D, Barillier D, Mosrati R
. Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Arch Microbiol. 2008; 190(2):141-50.
DOI: 10.1007/s00203-008-0380-8.
View
18.
Daddaoua A, Fillet S, Fernandez M, Udaondo Z, Krell T, Ramos J
. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS. PLoS One. 2012; 7(7):e39390.
PMC: 3402500.
DOI: 10.1371/journal.pone.0039390.
View
19.
Del Castillo T, Ramos J, Rodriguez-Herva J, Fuhrer T, Sauer U, Duque E
. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol. 2007; 189(14):5142-52.
PMC: 1951859.
DOI: 10.1128/JB.00203-07.
View
20.
Lu J, Huang X, Li K, Li S, Zhang M, Wang Y
. LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18. J Biotechnol. 2009; 143(1):1-9.
DOI: 10.1016/j.jbiotec.2009.06.008.
View