» Articles » PMID: 18245293

A Set of Activators and Repressors Control Peripheral Glucose Pathways in Pseudomonas Putida to Yield a Common Central Intermediate

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2008 Feb 5
PMID 18245293
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Pseudomonas putida KT2440 channels glucose to the central Entner-Doudoroff intermediate 6-phosphogluconate through three convergent pathways. The genes for these convergent pathways are clustered in three independent regions on the host chromosome. A number of monocistronic units and operons coexist within each of these clusters, favoring coexpression of catabolic enzymes and transport systems. Expression of the three pathways is mediated by three transcriptional repressors, HexR, GnuR, and PtxS, and by a positive transcriptional regulator, GltR-2. In this study, we generated mutants in each of the regulators and carried out transcriptional assays using microarrays and transcriptional fusions. These studies revealed that HexR controls the genes that encode glucokinase/glucose 6-phosphate dehydrogenase that yield 6-phosphogluconate; the genes for the Entner-Doudoroff enzymes that yield glyceraldehyde-3-phosphate and pyruvate; and gap-1, which encodes glyceraldehyde-3-phosphate dehydrogenase. GltR-2 is the transcriptional regulator that controls specific porins for the entry of glucose into the periplasmic space, as well as the gtsABCD operon for glucose transport through the inner membrane. GnuR is the repressor of gluconate transport and gluconokinase responsible for the conversion of gluconate into 6-phosphogluconate. PtxS, however, controls the enzymes for oxidation of gluconate to 2-ketogluconate, its transport and metabolism, and a set of genes unrelated to glucose metabolism.

Citing Articles

Engineered Passive Glucose Uptake in Pseudomonas taiwanensis VLB120 Increases Resource Efficiency for Bioproduction.

Schwanemann T, Krink N, Nikel P, Wynands B, Wierckx N Microb Biotechnol. 2025; 18(1):e70095.

PMID: 39871105 PMC: 11772102. DOI: 10.1111/1751-7915.70095.


Characterization and Transcriptional Regulation of the 2-Ketogluconate Utilization Operon in .

Sun L, Yang W, Li L, Wang D, Zan X, Cui F Microorganisms. 2025; 12(12.

PMID: 39770733 PMC: 11678583. DOI: 10.3390/microorganisms12122530.


Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in .

Dong Y, Zhai K, Li Y, Lv Z, Zhao M, Gan T Curr Issues Mol Biol. 2024; 46(11):12784-12799.

PMID: 39590355 PMC: 11592762. DOI: 10.3390/cimb46110761.


GnuR Represses the Expression of Glucose and Gluconate Catabolism in Pseudomonas putida KT2440.

Chen W, Ma R, Feng Y, Xiao Y, Sekowska A, Danchin A Microb Biotechnol. 2024; 17(11):e70059.

PMID: 39589324 PMC: 11590683. DOI: 10.1111/1751-7915.70059.


The Functional Characterization of the 6-Phosphogluconate Dehydratase Operon in 2-Ketogluconic Acid Industrial Producing Strain JUIM01.

Sun W, Zhang Q, Li L, Qu M, Zan X, Cui F Foods. 2024; 13(21).

PMID: 39517228 PMC: 11544825. DOI: 10.3390/foods13213444.


References
1.
Temple L, Sage A, Christie G, Phibbs Jr P . Two genes for carbohydrate catabolism are divergently transcribed from a region of DNA containing the hexC locus in Pseudomonas aeruginosa PAO1. J Bacteriol. 1994; 176(15):4700-9. PMC: 196292. DOI: 10.1128/jb.176.15.4700-4709.1994. View

2.
Trias J, Rosenberg E, Nikaido H . Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa. Biochim Biophys Acta. 1988; 938(3):493-6. DOI: 10.1016/0005-2736(88)90148-4. View

3.
Ramos J, Duque E, Ramos-Gonzalez M . Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Appl Environ Microbiol. 1991; 57(1):260-6. PMC: 182695. DOI: 10.1128/aem.57.1.260-266.1991. View

4.
Marques S, Ramos J, Timmis K . Analysis of the mRNA structure of the Pseudomonas putida TOL meta fission pathway operon around the transcription initiation point, the xylTE and the xylFJ regions. Biochim Biophys Acta. 1993; 1216(2):227-36. DOI: 10.1016/0167-4781(93)90149-8. View

5.
Ramos J, Martinez-Bueno M, Molina-Henares A, Teran W, Watanabe K, Zhang X . The TetR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005; 69(2):326-56. PMC: 1197418. DOI: 10.1128/MMBR.69.2.326-356.2005. View