6.
Madacki J, Kopal M, Jackson M, Kordulakova J
. Mycobacterial Epoxide Hydrolase EphD Is Inhibited by Urea and Thiourea Derivatives. Int J Mol Sci. 2021; 22(6).
PMC: 7998700.
DOI: 10.3390/ijms22062884.
View
7.
Moncada-Diaz M, Rodriguez-Almonacid C, Quiceno-Giraldo E, Khuong F, Muskus C, Karamysheva Z
. Molecular Mechanisms of Drug Resistance in spp. Pathogens. 2024; 13(10).
PMC: 11510721.
DOI: 10.3390/pathogens13100835.
View
8.
Mowbray C, Braillard S, Speed W, Glossop P, Whitlock G, Gibson K
. Novel Amino-pyrazole Ureas with Potent In Vitro and In Vivo Antileishmanial Activity. J Med Chem. 2015; 58(24):9615-24.
DOI: 10.1021/acs.jmedchem.5b01456.
View
9.
Sanna G, Madeddu S, Giliberti G, Piras S, Struga M, Wrzosek M
. Synthesis and Biological Evaluation of Novel Indole-Derived Thioureas. Molecules. 2018; 23(10).
PMC: 6222422.
DOI: 10.3390/molecules23102554.
View
10.
Kapanda C, Masquelier J, Labar G, Muccioli G, Poupaert J, Lambert D
. Synthesis and pharmacological evaluation of 2,4-dinitroaryldithiocarbamate derivatives as novel monoacylglycerol lipase inhibitors. J Med Chem. 2012; 55(12):5774-83.
DOI: 10.1021/jm3006004.
View
11.
Sohlenius-Sternbeck A, Terelius Y
. Evaluation of ADMET Predictor in Early Discovery Drug Metabolism and Pharmacokinetics Project Work. Drug Metab Dispos. 2021; 50(2):95-104.
DOI: 10.1124/dmd.121.000552.
View
12.
Pingaew R, Prachayasittikul V, Anuwongcharoen N, Prachayasittikul S, Ruchirawat S, Prachayasittikul V
. Synthesis and molecular docking of N,N'-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorg Chem. 2018; 79:171-178.
DOI: 10.1016/j.bioorg.2018.05.002.
View
13.
Burza S, Croft S, Boelaert M
. Leishmaniasis. Lancet. 2018; 392(10151):951-970.
DOI: 10.1016/S0140-6736(18)31204-2.
View
14.
Gan S, Wan J, Pan Y, Sun C
. Highly efficient and catalyst-free synthesis of substituted thioureas in water. Mol Divers. 2011; 15(3):809-15.
DOI: 10.1007/s11030-010-9298-6.
View
15.
Schadich E, Nylen S, Gurska S, Kotulova J, Andronati S, Pavlovsky V
. Activity of 1-aryl-4-(naphthalimidoalkyl) piperazine derivatives against Leishmania major and Leishmania mexicana. Parasitol Int. 2022; 91:102647.
DOI: 10.1016/j.parint.2022.102647.
View
16.
Moneer A, Mohammed K, El-Nassan H
. Synthesis of Novel Substituted Thiourea and Benzimidazole Derivatives Containing a Pyrazolone Ring as Anti-Inflammatory Agents. Chem Biol Drug Des. 2015; 87(5):784-93.
DOI: 10.1111/cbdd.12712.
View
17.
Kowalczyk A, Pieczonka A, Rachwalski M, Lesniak S, Staczek P
. Synthesis and Evaluation of Biological Activities of Aziridine Derivatives of Urea and Thiourea. Molecules. 2018; 23(1).
PMC: 5943925.
DOI: 10.3390/molecules23010045.
View
18.
Akhoundi M, Kuhls K, Cannet A, Votypka J, Marty P, Delaunay P
. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis. 2016; 10(3):e0004349.
PMC: 4777430.
DOI: 10.1371/journal.pntd.0004349.
View
19.
Calixto S, Simao T, Palmeira-Mello M, Viana G, Assumpcao P, Rezende M
. Antimycobacterial and anti-inflammatory activities of thiourea derivatives focusing on treatment approaches for severe pulmonary tuberculosis. Bioorg Med Chem. 2021; 53:116506.
DOI: 10.1016/j.bmc.2021.116506.
View
20.
Upadhayaya R, Dixit S, Foldesi A, Chattopadhyaya J
. New antiprotozoal agents: their synthesis and biological evaluations. Bioorg Med Chem Lett. 2013; 23(9):2750-8.
DOI: 10.1016/j.bmcl.2013.02.054.
View