6.
Neitzel C, Demuth P, Wittmann S, Fahrer J
. Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities. Cancers (Basel). 2020; 12(7).
PMC: 7408264.
DOI: 10.3390/cancers12071731.
View
7.
Wu Z, Zuo M, Zeng L, Cui K, Liu B, Yan C
. OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep. 2020; 22(1):e50827.
PMC: 7788456.
DOI: 10.15252/embr.202050827.
View
8.
Tan Z, Luo X, Xiao L, Tang M, Bode A, Dong Z
. The Role of PGC1α in Cancer Metabolism and its Therapeutic Implications. Mol Cancer Ther. 2016; 15(5):774-82.
DOI: 10.1158/1535-7163.MCT-15-0621.
View
9.
Shi L, Liu J, Peng Y, Zhang J, Dai X, Zhang S
. Deubiquitinase OTUD6A promotes proliferation of cancer cells via regulating Drp1 stability and mitochondrial fission. Mol Oncol. 2020; 14(12):3169-3183.
PMC: 7718948.
DOI: 10.1002/1878-0261.12825.
View
10.
Mollica M, Raso G, Cavaliere G, Trinchese G, De Filippo C, Aceto S
. Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice. Diabetes. 2017; 66(5):1405-1418.
DOI: 10.2337/db16-0924.
View
11.
Herkenne S, Ek O, Zamberlan M, Pellattiero A, Chergova M, Chivite I
. Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. Cell Metab. 2020; 31(5):987-1003.e8.
DOI: 10.1016/j.cmet.2020.04.007.
View
12.
Strickertsson J, Desler C, Rasmussen L
. Bacterial infection increases risk of carcinogenesis by targeting mitochondria. Semin Cancer Biol. 2017; 47:95-100.
DOI: 10.1016/j.semcancer.2017.07.003.
View
13.
Wang Y, Zhang J, Li B, He Q
. Proteomic analysis of mitochondria: biological and clinical progresses in cancer. Expert Rev Proteomics. 2017; 14(10):891-903.
DOI: 10.1080/14789450.2017.1374180.
View
14.
Vasan K, Werner M, Chandel N
. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 2020; 32(3):341-352.
PMC: 7483781.
DOI: 10.1016/j.cmet.2020.06.019.
View
15.
Wang A, Keita A, Phan V, McKay C, Schoultz I, Lee J
. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am J Pathol. 2014; 184(9):2516-27.
PMC: 4188172.
DOI: 10.1016/j.ajpath.2014.05.019.
View
16.
Lin C, Liu L, Ou L, Pan S, Lin C, Wei Y
. Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol Rep. 2017; 39(1):316-330.
DOI: 10.3892/or.2017.6087.
View
17.
Ericson N, Kulawiec M, Vermulst M, Sheahan K, OSullivan J, Salk J
. Decreased mitochondrial DNA mutagenesis in human colorectal cancer. PLoS Genet. 2012; 8(6):e1002689.
PMC: 3369930.
DOI: 10.1371/journal.pgen.1002689.
View
18.
Wang J, Ding S, Liu X, Yu T, Wu Z, Li Y
. Hypoxia Affects Mitochondrial Stress and Facilitates Tumor Metastasis of Colorectal Cancer Through Slug SUMOylation. Curr Mol Med. 2023; 25(1):27-36.
DOI: 10.2174/0115665240271525231112121008.
View
19.
Lareau C, Ludwig L, Muus C, Gohil S, Zhao T, Chiang Z
. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol. 2020; 39(4):451-461.
PMC: 7878580.
DOI: 10.1038/s41587-020-0645-6.
View
20.
Lettini G, Sisinni L, Condelli V, Matassa D, Simeon V, Maddalena F
. TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma. Cell Death Differ. 2016; 23(11):1792-1803.
PMC: 5071570.
DOI: 10.1038/cdd.2016.67.
View