6.
Shinha K, Nihei W, Ono T, Nakazato R, Kimura H
. A pharmacokinetic-pharmacodynamic model based on multi-organ-on-a-chip for drug-drug interaction studies. Biomicrofluidics. 2022; 14(4):044108.
PMC: 8719524.
DOI: 10.1063/5.0011545.
View
7.
Adler M, Ramm S, Hafner M, Muhlich J, Gottwald E, Weber E
. A Quantitative Approach to Screen for Nephrotoxic Compounds In Vitro. J Am Soc Nephrol. 2015; 27(4):1015-28.
PMC: 4814182.
DOI: 10.1681/ASN.2015010060.
View
8.
Huh D, Leslie D, Matthews B, Fraser J, Jurek S, Hamilton G
. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012; 4(159):159ra147.
PMC: 8265389.
DOI: 10.1126/scitranslmed.3004249.
View
9.
Bavli D, Prill S, Ezra E, Levy G, Cohen M, Vinken M
. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2016; 113(16):E2231-40.
PMC: 4843487.
DOI: 10.1073/pnas.1522556113.
View
10.
Zhang M, Xu C, Jiang L, Qin J
. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb). 2018; 7(6):1048-1060.
PMC: 6220735.
DOI: 10.1039/c8tx00156a.
View
11.
Park J, Lee B, Jeong G, Hyun J, Lee C, Lee S
. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer's disease. Lab Chip. 2014; 15(1):141-50.
DOI: 10.1039/c4lc00962b.
View
12.
Natu R, Herbertson L, Sena G, Strachan K, Guha S
. A Systematic Analysis of Recent Technology Trends of Microfluidic Medical Devices in the United States. Micromachines (Basel). 2023; 14(7).
PMC: 10384103.
DOI: 10.3390/mi14071293.
View
13.
Garcia L, Palma-Florez S, Espinosa V, Soleimani Rokni F, Lagunas A, Mir M
. Ferulic acid-loaded polymeric nanoparticles prepared from nano-emulsion templates facilitate internalisation across the blood-brain barrier in model membranes. Nanoscale. 2023; 15(17):7929-7944.
DOI: 10.1039/d2nr07256d.
View
14.
Krenger R, Cornaglia M, Lehnert T, Gijs M
. Microfluidic system for Caenorhabditis elegans culture and oxygen consumption rate measurements. Lab Chip. 2019; 20(1):126-135.
DOI: 10.1039/c9lc00829b.
View
15.
Thacker V, Dhar N, Sharma K, Barrile R, Karalis K, McKinney J
. A lung-on-chip model of early infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. Elife. 2020; 9.
PMC: 7735758.
DOI: 10.7554/eLife.59961.
View
16.
Hassell B, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen C
. Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro. Cell Rep. 2017; 21(2):508-516.
DOI: 10.1016/j.celrep.2017.09.043.
View
17.
Liu N, Liang C, Li Y, Lee I
. A Real-Time Sensing System for Monitoring Neural Network Degeneration in an Alzheimer's Disease-on-a-Chip Model. Pharmaceutics. 2022; 14(5).
PMC: 9148060.
DOI: 10.3390/pharmaceutics14051022.
View
18.
Hong Y, Boiti A, Vallone D, Foulkes N
. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants (Basel). 2024; 13(3).
PMC: 10967436.
DOI: 10.3390/antiox13030312.
View
19.
Jie M, Mao S, Liu H, He Z, Li H, Lin J
. Evaluation of drug combination for glioblastoma based on an intestine-liver metabolic model on microchip. Analyst. 2017; 142(19):3629-3638.
DOI: 10.1039/c7an00453b.
View
20.
Bovard D, Sandoz A, Luettich K, Frentzel S, Iskandar A, Marescotti D
. A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab Chip. 2018; 18(24):3814-3829.
DOI: 10.1039/c8lc01029c.
View