» Articles » PMID: 35631608

A Real-Time Sensing System for Monitoring Neural Network Degeneration in an Alzheimer's Disease-on-a-Chip Model

Overview
Journal Pharmaceutics
Publisher MDPI
Date 2022 May 28
PMID 35631608
Authors
Affiliations
Soon will be listed here.
Abstract

Stem cell-based in vitro models may provide potential therapeutic strategies and allow drug screening for neurodegenerative diseases, including Alzheimer's disease (AD). Herein, we develop a neural stem cell (NSC) spheroid-based biochip that is characterized by a brain-like structure, well-defined neural differentiation, and neural network formation, representing a brain-on-a-chip. This system consisted of microelectrode arrays with a multichannel platform and allowed the real-time monitoring of network formation and degeneration by impedance analysis. The parameters of this platform for the real-time tracking of network development and organization were established based on our previous study. Subsequently, β-amyloid (Aβ) was added into the brain-on-a-chip system to generate an AD-on-a-chip model, and toxic effects on neurons and the degeneration of synapses were observed. The AD-on-a-chip model may help us to investigate the neurotoxicity of Aβ on neurons and neural networks in real time. Aβ causes neural damage and accumulates around neurites or inside neurospheroids, as observed by immunostaining and scanning electron microscopy (SEM). After incubation with Aβ, reactive oxygen species (ROS) increased, synapse function decreased, and the neurotransmitter-acetylcholine (ACh) concentration decreased were observed. Most importantly, the real-time analysis system monitored the impedance value variation in the system with Aβ incubation, providing consecutive network disconnection data that are consistent with biological data. This platform provides simple, real-time, and convenient sensing to monitor the network microenvironment. The proposed AD-on-a-chip model enhances the understanding of neurological pathology, and the development of this model provides an alternative for the study of drug discovery and cell-protein interactions in the brain.

Citing Articles

Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective.

Calvo B, Schembri-Wismayer P, Duran-Alonso M Cells. 2025; 14(5).

PMID: 40072076 PMC: 11898746. DOI: 10.3390/cells14050347.


Organ-on-a-chip platforms for drug development, cellular toxicity assessment, and disease modeling.

Khurram M, Cinel G, Yesil Celiktas O, Bedir E Turk J Biol. 2025; 48(6):348-363.

PMID: 39758843 PMC: 11698198. DOI: 10.55730/1300-0152.2711.


Sensor-integrated brain-on-a-chip platforms: Improving the predictive validity in neurodegenerative research.

Spitz S, Schobesberger S, Brandauer K, Ertl P Bioeng Transl Med. 2024; 9(3):e10604.

PMID: 38818126 PMC: 11135156. DOI: 10.1002/btm2.10604.


Sensorization of microfluidic brain-on-a-chip devices: Towards a new generation of integrated drug screening systems.

Marino A, Battaglini M, Lefevre M, Ceccarelli M, Ziaja K, Ciofani G Trends Analyt Chem. 2023; 168:117319.

PMID: 37915756 PMC: 7615229. DOI: 10.1016/j.trac.2023.117319.

References
1.
Preische O, Schultz S, Apel A, Kuhle J, Kaeser S, Barro C . Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease. Nat Med. 2019; 25(2):277-283. PMC: 6367005. DOI: 10.1038/s41591-018-0304-3. View

2.
Johnstone M, Gearing A, Miller K . A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol. 1999; 93(1-2):182-93. DOI: 10.1016/s0165-5728(98)00226-4. View

3.
Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K . Alzheimer's disease drug development pipeline: 2017. Alzheimers Dement (N Y). 2017; 3(3):367-384. PMC: 5651419. DOI: 10.1016/j.trci.2017.05.002. View

4.
Song H, Shim S, Kim D, Won S, Joo S, Kim S . β-Amyloid is transmitted via neuronal connections along axonal membranes. Ann Neurol. 2013; 75(1):88-97. DOI: 10.1002/ana.24029. View

5.
Moreira F, Sale M, Di Lorenzo M . Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens Bioelectron. 2016; 87:607-614. DOI: 10.1016/j.bios.2016.08.104. View