6.
Shah S, Sohail M, Khan S, Usman Minhas M, De Matas M, Sikstone V
. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol. 2019; 139:975-993.
DOI: 10.1016/j.ijbiomac.2019.08.007.
View
7.
Han G, Ceilley R
. Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther. 2017; 34(3):599-610.
PMC: 5350204.
DOI: 10.1007/s12325-017-0478-y.
View
8.
Saghiri M, Asatourian A, Orangi J, Sorenson C, Sheibani N
. Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol. 2015; 96(1):143-55.
DOI: 10.1016/j.critrevonc.2015.05.011.
View
9.
Spampinato S, Caruso G, De Pasquale R, Sortino M, Merlo S
. The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals (Basel). 2020; 13(4).
PMC: 7243111.
DOI: 10.3390/ph13040060.
View
10.
Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C
. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro. 2011; 25(3):657-63.
DOI: 10.1016/j.tiv.2011.01.003.
View
11.
Davis F, Kimball A, Boniakowski A, Gallagher K
. Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads. Curr Diab Rep. 2018; 18(1):2.
DOI: 10.1007/s11892-018-0970-z.
View
12.
Zhao X, Chang L, Hu Y, Xu S, Liang Z, Ren X
. Preparation of Photocatalytic and Antibacterial MOF Nanozyme Used for Infected Diabetic Wound Healing. ACS Appl Mater Interfaces. 2022; 14(16):18194-18208.
DOI: 10.1021/acsami.2c03001.
View
13.
Sasidharan A, Panchakarla L, Sadanandan A, Ashokan A, Chandran P, Girish C
. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small. 2012; 8(8):1251-63.
DOI: 10.1002/smll.201102393.
View
14.
Song P, Qin H, Gao H, Cong H, Yu S
. Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat Commun. 2018; 9(1):2786.
PMC: 6050250.
DOI: 10.1038/s41467-018-05238-w.
View
15.
Zhao Z, Fang R, Rong Q, Liu M
. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures. Adv Mater. 2017; 29(45).
DOI: 10.1002/adma.201703045.
View
16.
Jeon Y, Jang Y, Yoo D, Kim S, Lee S, Nam M
. Mesenchymal stem cells' interaction with skin: wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen. 2010; 18(6):655-61.
DOI: 10.1111/j.1524-475X.2010.00636.x.
View
17.
Padmavathy N, Vijayaraghavan R
. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 2016; 9(3):035004.
PMC: 5099658.
DOI: 10.1088/1468-6996/9/3/035004.
View
18.
Xiao J, Zhu Y, Huddleston S, Li P, Xiao B, Farha O
. Copper Metal-Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes. ACS Nano. 2018; 12(2):1023-1032.
DOI: 10.1021/acsnano.7b01850.
View
19.
Jiao Y, Chen X, Niu Y, Huang S, Wang J, Luo M
. Wharton's jelly mesenchymal stem cells embedded in PF-127 hydrogel plus sodium ascorbyl phosphate combination promote diabetic wound healing in type 2 diabetic rat. Stem Cell Res Ther. 2021; 12(1):559.
PMC: 8557497.
DOI: 10.1186/s13287-021-02626-w.
View
20.
Feig V, Tran H, Lee M, Bao Z
. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun. 2018; 9(1):2740.
PMC: 6048132.
DOI: 10.1038/s41467-018-05222-4.
View