» Articles » PMID: 30018323

Self-healing and Superstretchable Conductors from Hierarchical Nanowire Assemblies

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Jul 19
PMID 30018323
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

It is still a great challenge to improve deformability and fatigue-resistance of stretchable conductors when maintaining their high-level conductivity for practical use. Herein, a high-performance stretchable conductor with hierarchically ternary network and self-healing capability is demonstrated through in situ polymerizing N-isopropylacrylamide (NIPAM) on well-defined sulfur-containing molecule-modified Ag nanowire (AgNW) aerogel framework. Owing to hierarchical architecture from nanoscale to microscale and further to macroscale and strong interactions of polymer chains and AgNWs, the composite exhibits good conductivity of 93 S cm, excellent electromechanical stability up to superhigh tensile strain of 800% and strong fatigue-resistant ability through well accommodating the applied deformations and sharing external force in the network. Furthermore, the composite delivers a fast and strong healing capability induced by reversible Ag-S bonds, which enables the healed conductor to hold an impressive electromechanical property. These prominent demonstrations confirm this material as top performer for use as flexible, stretchable electronic devices.

Citing Articles

In Situ Formation of Hydrogels Loaded with ZnO Nanoparticles Promotes Healing of Diabetic Wounds in Rats.

Wang J, Zhang C, Xu X, Sun T, Kong L, Ning R ACS Omega. 2025; 9(52):51442-51452.

PMID: 39758615 PMC: 11696414. DOI: 10.1021/acsomega.4c08537.


Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics.

Shin Y, Lee H, Hong Y, Sunwoo S, Park O, Choi S Sci Adv. 2024; 10(12):eadi7724.

PMID: 38507496 PMC: 10954228. DOI: 10.1126/sciadv.adi7724.


Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors.

Ding H, Liu J, Shen X, Li H Polymers (Basel). 2023; 15(19).

PMID: 37836050 PMC: 10575238. DOI: 10.3390/polym15194001.


Flexible Nanocomposite Conductors for Electromagnetic Interference Shielding.

Nan Z, Wei W, Lin Z, Chang J, Hao Y Nanomicro Lett. 2023; 15(1):172.

PMID: 37420119 PMC: 10328908. DOI: 10.1007/s40820-023-01122-5.


Ultrasensitive and ultrastretchable electrically self-healing conductors.

Li Y, Fang T, Zhang J, Zhu H, Sun Y, Wang S Proc Natl Acad Sci U S A. 2023; 120(23):e2300953120.

PMID: 37253015 PMC: 10266060. DOI: 10.1073/pnas.2300953120.


References
1.
Cheng Y, Zhang H, Wang R, Wang X, Zhai H, Wang T . Highly Stretchable and Conductive Copper Nanowire Based Fibers with Hierarchical Structure for Wearable Heaters. ACS Appl Mater Interfaces. 2016; 8(48):32925-32933. DOI: 10.1021/acsami.6b09293. View

2.
Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y, Itoh A . Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater. 2017; 16(8):834-840. DOI: 10.1038/nmat4904. View

3.
Ge J, Yao H, Wang X, Ye Y, Wang J, Wu Z . Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angew Chem Int Ed Engl. 2013; 52(6):1654-9. DOI: 10.1002/anie.201209596. View

4.
Cho D, Park J, Kim J, Kim T, Kim J, Park I . Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor. ACS Appl Mater Interfaces. 2017; 9(20):17369-17378. DOI: 10.1021/acsami.7b03052. View

5.
Qian F, Lan P, Freyman M, Chen W, Kou T, Olson T . Ultralight Conductive Silver Nanowire Aerogels. Nano Lett. 2017; 17(12):7171-7176. DOI: 10.1021/acs.nanolett.7b02790. View