6.
Fock K, Khoo J
. Diet and exercise in management of obesity and overweight. J Gastroenterol Hepatol. 2013; 28 Suppl 4:59-63.
DOI: 10.1111/jgh.12407.
View
7.
Magkos F, Hjorth M, Astrup A
. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020; 16(10):545-555.
DOI: 10.1038/s41574-020-0381-5.
View
8.
Wolfe B, Kvach E, Eckel R
. Treatment of Obesity: Weight Loss and Bariatric Surgery. Circ Res. 2016; 118(11):1844-55.
PMC: 4888907.
DOI: 10.1161/CIRCRESAHA.116.307591.
View
9.
Cypess A, Kahn C
. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010; 17(2):143-9.
PMC: 3593105.
DOI: 10.1097/MED.0b013e328337a81f.
View
10.
Peirce V, Vidal-Puig A
. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 2014; 1(4):353-60.
DOI: 10.1016/S2213-8587(13)70055-X.
View
11.
Orava J, Nuutila P, Lidell M, Oikonen V, Noponen T, Viljanen T
. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011; 14(2):272-9.
DOI: 10.1016/j.cmet.2011.06.012.
View
12.
Cannon B, Nedergaard J
. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004; 84(1):277-359.
DOI: 10.1152/physrev.00015.2003.
View
13.
Mendez-Gutierrez A, Osuna-Prieto F, Aguilera C, Ruiz J, Sanchez-Delgado G
. Endocrine Mechanisms Connecting Exercise to Brown Adipose Tissue Metabolism: a Human Perspective. Curr Diab Rep. 2020; 20(9):40.
DOI: 10.1007/s11892-020-01319-7.
View
14.
Latorre-Muro P, OMalley K, Bennett C, Perry E, Balsa E, Tavares C
. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab. 2021; 33(3):598-614.e7.
PMC: 7962155.
DOI: 10.1016/j.cmet.2021.01.013.
View
15.
Feldmann H, Golozoubova V, Cannon B, Nedergaard J
. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009; 9(2):203-9.
DOI: 10.1016/j.cmet.2008.12.014.
View
16.
Kazak L, Chouchani E, Jedrychowski M, Erickson B, Shinoda K, Cohen P
. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell. 2015; 163(3):643-55.
PMC: 4656041.
DOI: 10.1016/j.cell.2015.09.035.
View
17.
Yoneshiro T, Wang Q, Tajima K, Matsushita M, Maki H, Igarashi K
. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature. 2019; 572(7771):614-619.
PMC: 6715529.
DOI: 10.1038/s41586-019-1503-x.
View
18.
Sassano M, van Vliet A, Vervoort E, Van Eygen S, Van den Haute C, Pavie B
. PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. J Cell Biol. 2023; 222(3).
PMC: 9998969.
DOI: 10.1083/jcb.202206008.
View
19.
Bobrovnikova-Marjon E, Pytel D, Riese M, Vaites L, Singh N, Koretzky G
. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation. Mol Cell Biol. 2012; 32(12):2268-78.
PMC: 3372262.
DOI: 10.1128/MCB.00063-12.
View
20.
Perea V, Cole C, Lebeau J, Dolina V, Baron K, Madhavan A
. PERK signaling promotes mitochondrial elongation by remodeling membrane phosphatidic acid. EMBO J. 2023; 42(15):e113908.
PMC: 10390871.
DOI: 10.15252/embj.2023113908.
View