6.
Zhao Y, Zhu X, Liu L, Duan Z, Liu Y, Zhang W
. One-Step Synthesis of Nitrogen/Fluorine Co-Doped Carbon Dots for Use in Ferric Ions and Ascorbic Acid Detection. Nanomaterials (Basel). 2022; 12(14).
PMC: 9323265.
DOI: 10.3390/nano12142377.
View
7.
Xu O, Wan S, Yang J, Song H, Dong L, Xia J
. Ni-MOF Functionalized Carbon Dots with Fluorescence and Adsorption Performance for Rapid Detection of Fe (III) and Ascorbic Acid. J Fluoresc. 2022; 32(5):1743-1754.
DOI: 10.1007/s10895-022-02982-7.
View
8.
Du F, Gong X, Lu W, Liu Y, Gao Y, Shuang S
. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging. Talanta. 2018; 179:554-562.
DOI: 10.1016/j.talanta.2017.11.030.
View
9.
Sudewi S, Chabib L, Zulfajri M, Gedda G, Huang G
. Polyvinylpyrrolidone-passivated fluorescent iron oxide quantum dots for turn-off detection of tetracycline in biological fluids. J Food Drug Anal. 2023; 31(1):177-193.
PMC: 10208663.
DOI: 10.38212/2224-6614.3440.
View
10.
Dong W, Yu J, Gong X, Liang W, Fan L, Dong C
. A turn-off-on near-infrared photoluminescence sensor for sequential detection of Fe and ascorbic acid based on glutathione-capped gold nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc. 2020; 247:119085.
DOI: 10.1016/j.saa.2020.119085.
View
11.
Wang R, Wang Y, Zhao N, Zhao H, Yuan X, Zhao L
. Nitrogen and Sulfur Co-doped Carbon Quantum Dots for Detecting Fe, Ascorbic Acid and Alkaline Phosphatase Activities. J Fluoresc. 2023; 35(1):445-458.
DOI: 10.1007/s10895-023-03539-y.
View
12.
Wang M, Wan Y, Zhang K, Fu Q, Wang L, Zeng J
. Green synthesis of carbon dots using the flowers of Osmanthus fragrans (Thunb.) Lour. as precursors: application in Fe and ascorbic acid determination and cell imaging. Anal Bioanal Chem. 2019; 411(12):2715-2727.
DOI: 10.1007/s00216-019-01712-6.
View
13.
Wang M, Liu M, Nong S, Song W, Zhang X, Shen S
. Highly Luminescent Nucleoside-Based N, P-Doped Carbon Dots for Sensitive Detection of Ions and Bioimaging. Front Chem. 2022; 10:906806.
PMC: 9210210.
DOI: 10.3389/fchem.2022.906806.
View
14.
Zhan Y, Chiu C, Chen Y
. Using lanthanide ions as magnetic and sensing probes for the detection of tetracycline from complex samples. J Food Drug Anal. 2023; 31(2):371-380.
PMC: 10281728.
DOI: 10.38212/2224-6614.3457.
View
15.
Lai W, Guo J, Zheng N, Nie Y, Ye S, Tang D
. Selective determination of 2,4,6-trinitrophenol by using a novel carbon nanoparticles as a fluorescent probe in real sample. Anal Bioanal Chem. 2020; 412(13):3083-3090.
DOI: 10.1007/s00216-020-02558-z.
View
16.
Li Z, Tan B, Wu Z, Huang X
. A Robust Strontium Coordination Polymer with Selective and Sensitive Fluorescence Sensing Ability for Fe Ions. Materials (Basel). 2023; 16(2).
PMC: 9866177.
DOI: 10.3390/ma16020577.
View
17.
Zuo P, Zhang J, Zhou Y, Xie N, Xiao D
. Spontaneous Formation of Fluorescent Carbon Nanoparticles in Glutaraldehyde Solution and Their Fluorescence Mechanism. J Fluoresc. 2021; 31(2):509-516.
DOI: 10.1007/s10895-020-02678-w.
View
18.
Guo X, Yue G, Huang J, Liu C, Zeng Q, Wang L
. Label-Free Simultaneous Analysis of Fe(III) and Ascorbic Acid Using Fluorescence Switching of Ultrathin Graphitic Carbon Nitride Nanosheets. ACS Appl Mater Interfaces. 2018; 10(31):26118-26127.
DOI: 10.1021/acsami.8b10529.
View
19.
Luo X, Zhang W, Han Y, Chen X, Zhu L, Tang W
. N,S co-doped carbon dots based fluorescent "on-off-on" sensor for determination of ascorbic acid in common fruits. Food Chem. 2018; 258:214-221.
DOI: 10.1016/j.foodchem.2018.03.032.
View
20.
Yoo D, Park Y, Cheon B, Park M
. Carbon Dots as an Effective Fluorescent Sensing Platform for Metal Ion Detection. Nanoscale Res Lett. 2019; 14(1):272.
PMC: 6692426.
DOI: 10.1186/s11671-019-3088-6.
View