» Articles » PMID: 39752600

Oxylipin Profiling of Airway Structural Cells Is Unique and Modified by Relevant Stimuli

Overview
Journal J Proteome Res
Specialty Biochemistry
Date 2025 Jan 3
PMID 39752600
Authors
Affiliations
Soon will be listed here.
Abstract

Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation. At the baseline, ASM and HLF cells had the most similar oxylipin profiles, dominated by oxylipins from cytochrome P450 (CYP450) epoxygenase metabolites. TGFβ stimulation of HLF suppressed CYP450-derived oxylipins, while ASM stimulation increased prostaglandin production. HBE showed the most distinct baseline profile enriched with cyclooxygenase (COX)-derived oxylipins. TGFβ stimulation of HBE increased the level of several oxylipins from CYP450 epoxygenases. These findings highlight the importance of CYP450 oxylipins, which are relatively unexplored in the context of respiratory physiology. By resolving these oxylipin profiles, we enable future respiratory research to understand the function of these oxylipins in regulating physiology, especially in the context of modifying contraction and inflammation.

References
1.
Pang L, Knox A . Effect of interleukin-1 beta, tumour necrosis factor-alpha and interferon-gamma on the induction of cyclo-oxygenase-2 in cultured human airway smooth muscle cells. Br J Pharmacol. 1997; 121(3):579-87. PMC: 1564708. DOI: 10.1038/sj.bjp.0701152. View

2.
Gabbs M, Leng S, Devassy J, Monirujjaman M, Aukema H . Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv Nutr. 2015; 6(5):513-40. PMC: 4561827. DOI: 10.3945/an.114.007732. View

3.
Schaafsma D, McNeill K, Mutawe M, Ghavami S, Unruh H, Jacques E . Simvastatin inhibits TGFβ1-induced fibronectin in human airway fibroblasts. Respir Res. 2011; 12:113. PMC: 3173339. DOI: 10.1186/1465-9921-12-113. View

4.
Gouveia-Figueira S, Karimpour M, Bosson J, Blomberg A, Unosson J, Pourazar J . Mass spectrometry profiling of oxylipins, endocannabinoids, and N-acylethanolamines in human lung lavage fluids reveals responsiveness of prostaglandin E2 and associated lipid metabolites to biodiesel exhaust exposure. Anal Bioanal Chem. 2017; 409(11):2967-2980. PMC: 5366178. DOI: 10.1007/s00216-017-0243-8. View

5.
Sultana C, Shen Y, Rattan V, Kalra V . Lipoxygenase metabolites induced expression of adhesion molecules and transendothelial migration of monocyte-like HL-60 cells is linked to protein kinase C activation. J Cell Physiol. 1996; 167(3):477-87. DOI: 10.1002/(SICI)1097-4652(199606)167:3<477::AID-JCP12>3.0.CO;2-1. View