6.
Bonen A
. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol. 2002; 86(1):6-11.
DOI: 10.1007/s004210100516.
View
7.
Oishi Y, Tsukamoto H, Yokokawa T, Hirotsu K, Shimazu M, Uchida K
. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol (1985). 2015; 118(6):742-9.
DOI: 10.1152/japplphysiol.00054.2014.
View
8.
Shirai T, Kitaoka Y, Uemichi K, Tokinoya K, Takeda K, Takemasa T
. Effects of lactate administration on hypertrophy and mTOR signaling activation in mouse skeletal muscle. Physiol Rep. 2022; 10(16):e15436.
PMC: 9393907.
DOI: 10.14814/phy2.15436.
View
9.
Takahashi K, Kitaoka Y, Matsunaga Y, Hatta H
. Lactate administration does not affect denervation-induced loss of mitochondrial content and muscle mass in mice. FEBS Open Bio. 2021; 11(10):2836-2844.
PMC: 8487050.
DOI: 10.1002/2211-5463.13293.
View
10.
Miyazaki M, McCarthy J, Fedele M, Esser K
. Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol. 2011; 589(Pt 7):1831-46.
PMC: 3099033.
DOI: 10.1113/jphysiol.2011.205658.
View
11.
Ohno Y, Sugiura T, Ohira Y, Yoshioka T, Goto K
. Loading-associated expression of TRIM72 and caveolin-3 in antigravitational soleus muscle in mice. Physiol Rep. 2014; 2(12).
PMC: 4332229.
DOI: 10.14814/phy2.12259.
View
12.
Nonaka Y, Urashima S, Inai M, Nishimura S, Higashida K, Terada S
. Effects of rapid or slow body weight reduction on intramuscular protein degradation pathways during equivalent weight loss on rats. Physiol Res. 2017; 66(5):823-831.
DOI: 10.33549/physiolres.933502.
View
13.
Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J
. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem. 2008; 284(5):2811-2822.
DOI: 10.1074/jbc.M806409200.
View
14.
Juel C, Halestrap A
. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J Physiol. 1999; 517 ( Pt 3):633-42.
PMC: 2269375.
DOI: 10.1111/j.1469-7793.1999.0633s.x.
View
15.
Egawa T, Ohno Y, Goto A, Yokoyama S, Hayashi T, Goto K
. AMPK Mediates Muscle Mass Change But Not the Transition of Myosin Heavy Chain Isoforms during Unloading and Reloading of Skeletal Muscles in Mice. Int J Mol Sci. 2018; 19(10).
PMC: 6212939.
DOI: 10.3390/ijms19102954.
View
16.
van der Velden J, Langen R, Kelders M, Willems J, Wouters E, Janssen-Heininger Y
. Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK-3beta. Am J Physiol Cell Physiol. 2006; 292(5):C1636-44.
DOI: 10.1152/ajpcell.00504.2006.
View
17.
Cerda-Kohler H, Henriquez-Olguin C, Casas M, Jensen T, Llanos P, Jaimovich E
. Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol Rep. 2018; 6(18):e13800.
PMC: 6144450.
DOI: 10.14814/phy2.13800.
View
18.
Goldspink D, Garlick P, McNurlan M
. Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem J. 1983; 210(1):89-98.
PMC: 1154193.
DOI: 10.1042/bj2100089.
View
19.
Egawa T, Ohno Y, Goto A, Ikuta A, Suzuki M, Ohira T
. AICAR-induced activation of AMPK negatively regulates myotube hypertrophy through the HSP72-mediated pathway in C2C12 skeletal muscle cells. Am J Physiol Endocrinol Metab. 2013; 306(3):E344-54.
DOI: 10.1152/ajpendo.00495.2013.
View
20.
Mirzoev T
. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int J Mol Sci. 2020; 21(21).
PMC: 7663166.
DOI: 10.3390/ijms21217940.
View