6.
Albrecht T, Wimmer V, Auinger H, Erbe M, Knaak C, Ouzunova M
. Genome-based prediction of testcross values in maize. Theor Appl Genet. 2011; 123(2):339-50.
DOI: 10.1007/s00122-011-1587-7.
View
7.
Yadav S, Wei X, Joyce P, Atkin F, Deomano E, Sun Y
. Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects. Theor Appl Genet. 2021; 134(7):2235-2252.
PMC: 8263546.
DOI: 10.1007/s00122-021-03822-1.
View
8.
Hayes B, Wei X, Joyce P, Atkin F, Deomano E, Yue J
. Accuracy of genomic prediction of complex traits in sugarcane. Theor Appl Genet. 2021; 134(5):1455-1462.
DOI: 10.1007/s00122-021-03782-6.
View
9.
Hayes B, Panozzo J, Walker C, Choy A, Kant S, Wong D
. Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes. Theor Appl Genet. 2017; 130(12):2505-2519.
DOI: 10.1007/s00122-017-2972-7.
View
10.
Werner C, Gaynor R, Sargent D, Lillo A, Gorjanc G, Hickey J
. Genomic selection strategies for clonally propagated crops. Theor Appl Genet. 2023; 136(4):74.
PMC: 10036424.
DOI: 10.1007/s00122-023-04300-6.
View
11.
Juliana P, Singh R, Singh P, Crossa J, Huerta-Espino J, Lan C
. Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theor Appl Genet. 2017; 130(7):1415-1430.
PMC: 5487692.
DOI: 10.1007/s00122-017-2897-1.
View
12.
Bernal-Vasquez A, Gordillo A, Schmidt M, Piepho H
. Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program. BMC Genet. 2017; 18(1):51.
PMC: 5452640.
DOI: 10.1186/s12863-017-0512-8.
View
13.
Filho D, de Sousa Bueno Filho J, Regitano L, Alencar M, Alves R, Conceicao Meirelles S
. Tournaments between markers as a strategy to enhance genomic predictions. PLoS One. 2019; 14(6):e0217283.
PMC: 6590785.
DOI: 10.1371/journal.pone.0217283.
View
14.
Piperidis N, DHont A
. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. Plant J. 2020; 103(6):2039-2051.
DOI: 10.1111/tpj.14881.
View
15.
Beyene Y, Gowda M, Perez-Rodriguez P, Olsen M, Robbins K, Burgueno J
. Application of Genomic Selection at the Early Stage of Breeding Pipeline in Tropical Maize. Front Plant Sci. 2021; 12:685488.
PMC: 8274566.
DOI: 10.3389/fpls.2021.685488.
View
16.
Fickett N, Gutierrez A, Verma M, Pontif M, Hale A, Kimbeng C
. Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection. Genomics. 2018; 111(6):1794-1801.
DOI: 10.1016/j.ygeno.2018.12.002.
View
17.
Moser G, Tier B, Crump R, Khatkar M, Raadsma H
. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol. 2010; 41:56.
PMC: 2814805.
DOI: 10.1186/1297-9686-41-56.
View
18.
Mahadevaiah C, Appunu C, Aitken K, Suresha G, Vignesh P, Mahadeva Swamy H
. Genomic Selection in Sugarcane: Current Status and Future Prospects. Front Plant Sci. 2021; 12:708233.
PMC: 8502939.
DOI: 10.3389/fpls.2021.708233.
View
19.
Vitezica Z, Varona L, Legarra A
. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics. 2013; 195(4):1223-30.
PMC: 3832268.
DOI: 10.1534/genetics.113.155176.
View
20.
Voss-Fels K, Wei X, Ross E, Frisch M, Aitken K, Cooper M
. Strategies and considerations for implementing genomic selection to improve traits with additive and non-additive genetic architectures in sugarcane breeding. Theor Appl Genet. 2021; 134(5):1493-1511.
DOI: 10.1007/s00122-021-03785-3.
View