6.
Hollein A, Nadarajah N, Meggendorfer M, Jeromin S, Kern W, Haferlach C
. Molecular characterization of AML with at diagnosis and relapse reveals net loss of co-mutations. Hemasphere. 2019; 3(1):e178.
PMC: 6745937.
DOI: 10.1097/HS9.0000000000000178.
View
7.
Kim N, Hahn S, Choi Y, Cho H, Chung H, Jang J
. Comprehensive insights into AML relapse: genetic mutations, clonal evolution, and clinical outcomes. Cancer Cell Int. 2024; 24(1):174.
PMC: 11103850.
DOI: 10.1186/s12935-024-03368-4.
View
8.
Stams W, den Boer M, Beverloo H, Meijerink J, van Wering E, Janka-Schaub G
. Expression levels of TEL, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in t(12;21)-positive pediatric acute lymphoblastic leukemia. Clin Cancer Res. 2005; 11(8):2974-80.
DOI: 10.1158/1078-0432.CCR-04-1829.
View
9.
Al-Harbi S, Aljurf M, Mohty M, Almohareb F, Ali Ahmed S
. An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv. 2020; 4(1):229-238.
PMC: 6960481.
DOI: 10.1182/bloodadvances.2019000168.
View
10.
Cao X, Cai H, Mao Y, Wu Q, Zhang L, Zhou D
. Next-generation sequencing-based genetic landscape and its clinical implications for Chinese acute myeloid leukemia patients. Cancer Cell Int. 2019; 18:215.
PMC: 6303841.
DOI: 10.1186/s12935-018-0716-7.
View
11.
Lei Y, Chen X, Dai Y, Dai B, Wang J, Li M
. Combination of eriocalyxin B and homoharringtonine exerts synergistic anti-tumor effects against t(8;21) AML. Acta Pharmacol Sin. 2023; 45(3):633-645.
PMC: 10834584.
DOI: 10.1038/s41401-023-01196-2.
View
12.
Kong J, Zheng F, Wang Z, Zhang Y, Cheng Y, Fu H
. Avapritinib is effective for treatment of minimal residual disease in acute myeloid leukemia with t (8;21) and kit mutation failing to immunotherapy after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2023; 58(7):777-783.
DOI: 10.1038/s41409-023-01973-x.
View
13.
Duployez N, Nibourel O, Marceau-Renaut A, Willekens C, Helevaut N, Caillault A
. Minimal residual disease monitoring in t(8;21) acute myeloid leukemia based on RUNX1-RUNX1T1 fusion quantification on genomic DNA. Am J Hematol. 2014; 89(6):610-5.
DOI: 10.1002/ajh.23696.
View
14.
Panuzzo C, Jovanovski A, Ali M, Cilloni D, Pergolizzi B
. Revealing the Mysteries of Acute Myeloid Leukemia: From Quantitative PCR through Next-Generation Sequencing and Systemic Metabolomic Profiling. J Clin Med. 2022; 11(3).
PMC: 8836582.
DOI: 10.3390/jcm11030483.
View
15.
Rejeski K, Duque-Afonso J, Lubbert M
. AML1/ETO and its function as a regulator of gene transcription via epigenetic mechanisms. Oncogene. 2021; 40(38):5665-5676.
PMC: 8460439.
DOI: 10.1038/s41388-021-01952-w.
View
16.
Kim H, Moon H, Hur M, Yun Y, Lee M
. Acute myeloid leukemia with a RUNX1-RUNX1T1 t(1;21;8)(q21;q22;q22) novel variant: a case report and review of the literature. Acta Haematol. 2011; 125(4):237-41.
DOI: 10.1159/000323425.
View
17.
Ommen H, Ostergaard M, Yan M, Braendstrup K, Zhang D, Hokland P
. Persistent altered fusion transcript splicing identifies RUNX1-RUNX1T1+ AML patients likely to relapse. Eur J Haematol. 2009; 84(2):128-32.
DOI: 10.1111/j.1600-0609.2009.01371.x.
View
18.
Mendler J, Maharry K, Radmacher M, Mrozek K, Becker H, Metzeler K
. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol. 2012; 30(25):3109-18.
PMC: 3732007.
DOI: 10.1200/JCO.2011.40.6652.
View
19.
Swart L, Heidenreich O
. The RUNX1/RUNX1T1 network: translating insights into therapeutic options. Exp Hematol. 2020; 94:1-10.
PMC: 7854360.
DOI: 10.1016/j.exphem.2020.11.005.
View