» Articles » PMID: 34331016

AML1/ETO and Its Function As a Regulator of Gene Transcription Via Epigenetic Mechanisms

Overview
Journal Oncogene
Date 2021 Jul 31
PMID 34331016
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The chromosomal translocation t(8;21) and the resulting oncofusion gene AML1/ETO have long served as a prototypical genetic lesion to model and understand leukemogenesis. In this review, we describe the wide-ranging role of AML1/ETO in AML leukemogenesis, with a particular focus on the aberrant epigenetic regulation of gene transcription driven by this AML-defining mutation. We begin by analyzing how structural changes secondary to distinct genomic breakpoints and splice changes, as well as posttranscriptional modifications, influence AML1/ETO protein function. Next, we characterize how AML1/ETO recruits chromatin-modifying enzymes to target genes and how the oncofusion protein alters chromatin marks, transcription factor binding, and gene expression. We explore the specific impact of these global changes in the epigenetic network facilitated by the AML1/ETO oncofusion on cellular processes and leukemic growth. Furthermore, we define the genetic landscape of AML1/ETO-positive AML, presenting the current literature concerning the incidence of cooperating mutations in genes such as KIT, FLT3, and NRAS. Finally, we outline how alterations in transcriptional regulation patterns create potential vulnerabilities that may be exploited by epigenetically active agents and other therapeutics.

Citing Articles

WTAP-mediated mA methylation of PHF19 facilitates cell cycle progression by remodeling the accessible chromatin landscape in t(8;21) AML.

Li Y, Liu D, Wang L, Shao Y, Zhou H, Hu Y Oncogene. 2025; .

PMID: 40038518 DOI: 10.1038/s41388-025-03329-9.


Homoharringtonine: mechanisms, clinical applications and research progress.

Wang W, He L, Lin T, Xiang F, Wu Y, Zhou F Front Oncol. 2025; 15:1522273.

PMID: 39949739 PMC: 11821653. DOI: 10.3389/fonc.2025.1522273.


Characterization of Acute Myeloid Leukemia With RUNX1/RUNX1T1 Gene Rearrangement: Clinical, Hematological, and Morphological Features.

Maqbool S, Maqbool I, Yousaf M, Farooqi B, Sikandar M, Zainab R Cureus. 2024; 16(11):e74760.

PMID: 39735012 PMC: 11682721. DOI: 10.7759/cureus.74760.


A novel human pluripotent stem cell gene activation system identifies IGFBP2 as a mediator in the production of haematopoietic progenitors in vitro.

Petazzi P, Ventura T, Luongo F, McClafferty H, May A, Taylor H Elife. 2024; 13.

PMID: 39714446 PMC: 11666236. DOI: 10.7554/eLife.94884.


Fusion Genes in Myeloid Malignancies.

Ang C, Than H, Tuy T, Goh Y Cancers (Basel). 2024; 16(23).

PMID: 39682241 PMC: 11639841. DOI: 10.3390/cancers16234055.


References
1.
Tyner J, Tognon C, Bottomly D, Wilmot B, Kurtz S, Savage S . Functional genomic landscape of acute myeloid leukaemia. Nature. 2018; 562(7728):526-531. PMC: 6280667. DOI: 10.1038/s41586-018-0623-z. View

2.
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik V, Paschka P, Roberts N . Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016; 374(23):2209-2221. PMC: 4979995. DOI: 10.1056/NEJMoa1516192. View

3.
DiNardo C, Stein E, de Botton S, Roboz G, Altman J, Mims A . Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med. 2018; 378(25):2386-2398. DOI: 10.1056/NEJMoa1716984. View

4.
Stein E, DiNardo C, Pollyea D, Fathi A, Roboz G, Altman J . Enasidenib in mutant relapsed or refractory acute myeloid leukemia. Blood. 2017; 130(6):722-731. PMC: 5572791. DOI: 10.1182/blood-2017-04-779405. View

5.
Rowley J . Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet. 1973; 16(2):109-12. View