6.
Volani C, Pagliaro A, Rainer J, Paglia G, Porro B, Stadiotti I
. GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. J Cell Mol Med. 2022; 26(13):3687-3701.
PMC: 9258704.
DOI: 10.1111/jcmm.17396.
View
7.
Ciabrelli F, Rabbani L, Cardamone F, Zenk F, Loser E, Schachtle M
. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. Sci Adv. 2023; 9(16):eadf2687.
PMC: 10121174.
DOI: 10.1126/sciadv.adf2687.
View
8.
Peleg S, Feller C, Forne I, Schiller E, Sevin D, Schauer T
. Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. EMBO Rep. 2016; 17(3):455-69.
PMC: 4772992.
DOI: 10.15252/embr.201541132.
View
9.
Carre C, Szymczak D, Pidoux J, Antoniewski C
. The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster metamorphosis. Mol Cell Biol. 2005; 25(18):8228-38.
PMC: 1234334.
DOI: 10.1128/MCB.25.18.8228-8238.2005.
View
10.
Barlev N, Liu L, Chehab N, Mansfield K, Harris K, Halazonetis T
. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell. 2002; 8(6):1243-54.
DOI: 10.1016/s1097-2765(01)00414-2.
View
11.
Souidi A, Jagla K
. Heart as a Model for Cardiac Development and Diseases. Cells. 2021; 10(11).
PMC: 8623483.
DOI: 10.3390/cells10113078.
View
12.
Mutlu B, Puigserver P
. GCN5 acetyltransferase in cellular energetic and metabolic processes. Biochim Biophys Acta Gene Regul Mech. 2020; 1864(2):194626.
PMC: 7854474.
DOI: 10.1016/j.bbagrm.2020.194626.
View
13.
Huang B, Zhong D, Zhu J, An Y, Gao M, Zhu S
. Inhibition of histone acetyltransferase GCN5 extends lifespan in both yeast and human cell lines. Aging Cell. 2020; 19(4):e13129.
PMC: 7189995.
DOI: 10.1111/acel.13129.
View
14.
Downey M, Johnson J, Davey N, Newton B, Johnson T, Galaang S
. Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, gcn5, and esa1. Mol Cell Proteomics. 2014; 14(1):162-76.
PMC: 4288252.
DOI: 10.1074/mcp.M114.043141.
View
15.
Brownell J, Zhou J, Ranalli T, Kobayashi R, Edmondson D, Roth S
. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996; 84(6):843-51.
DOI: 10.1016/s0092-8674(00)81063-6.
View
16.
Goncalves S, Patat J, Guida M, Lachaussee N, Arrondel C, Helmstadter M
. A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies. PLoS Genet. 2018; 14(5):e1007386.
PMC: 5973622.
DOI: 10.1371/journal.pgen.1007386.
View
17.
Doenst T, Nguyen T, Abel E
. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013; 113(6):709-24.
PMC: 3896379.
DOI: 10.1161/CIRCRESAHA.113.300376.
View
18.
Li J, Cao Y, Yang Y, Ma H, Zhao J, Zhang Y
. Quantitative Acetylomics Reveals Substrates of Lysine Acetyltransferase GCN5 in Adult and Aging . J Proteome Res. 2023; 22(9):2909-2924.
DOI: 10.1021/acs.jproteome.3c00247.
View
19.
Haque M, Jakaria M, Akther M, Cho D, Kim I, Choi D
. The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond). 2021; 135(1):231-257.
DOI: 10.1042/CS20200986.
View
20.
Sakai M, Tujimura-Hayakawa T, Yagi T, Yano H, Mitsushima M, Unoki-Kubota H
. The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch. Nat Commun. 2016; 7:13147.
PMC: 5121418.
DOI: 10.1038/ncomms13147.
View