» Articles » PMID: 39725271

A RNA Dodecahedral Cage Inside a Human Virus Plays a Dual Biological Role in Virion Assembly and Genome Release Control

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2024 Dec 26
PMID 39725271
Authors
Affiliations
Soon will be listed here.
Abstract

Human rhinoviruses (RV) are among the most frequent human pathogens. As major causative agents of common colds they originate serious socioeconomic problems and huge expenditure every year, and they also exacerbate severe respiratory diseases. No anti-rhinoviral drugs or vaccines are available so far. Antiviral drug design may benefit from an understanding of the role during the infectious cycle of the interactions in the virion between the capsid and the viral nucleic acid. The genomic RNA inside the human RV virion forms a dodecahedral cage made of 30 double-stranded RNA elements that interact with equivalent sites at the capsid inner wall. RNA dodecahedral cages also occur in distantly related insect and plant viruses. However, the functional role(s) of the interactions between any dodecahedral cage and the capsid remained to be established. Here we describe an extensive structure-function mutational analysis of the capsid-RNA dodecahedral cage interface in the RV virion, to dissect the role of the interactions between the capsid and the cage-forming RNA duplexes in: (i) infection by RV; (ii) virus biological fitness; (iii) virion assembly; (iv) virion stability; and (v) viral RNA uncoating. The results reveal that the capsid-bound dsRNA dodecahedral cage in the human RV virion is a multifunctional structural element. Two structurally overlapping subsets of RNA duplex-capsid interactions promote virus infectivity and biological fitness by respectively facilitating virion assembly or restraining the untimely, unproductive uncoating of the viral RNA genome. These results provide new insights into virion morphogenesis and genome uncoating, and have implications for antiviral drug design.