6.
Tan Z, Xue H, Sun Y, Zhang C, Song Y, Qi Y
. The Role of Tumor Inflammatory Microenvironment in Lung Cancer. Front Pharmacol. 2021; 12:688625.
PMC: 8166205.
DOI: 10.3389/fphar.2021.688625.
View
7.
Banzato R, Pinheiro N, Olivo C, Santana F, Lopes F, Caperuto L
. Long-term endogenous acetylcholine deficiency potentiates pulmonary inflammation in a murine model of elastase-induced emphysema. Sci Rep. 2021; 11(1):15918.
PMC: 8342425.
DOI: 10.1038/s41598-021-95211-3.
View
8.
Salomon J, Endter S, Tachon G, Falson F, Buckley S, Ehrhardt C
. Transport of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) in human respiratory epithelial cells. Eur J Pharm Biopharm. 2012; 81(2):351-9.
DOI: 10.1016/j.ejpb.2012.03.001.
View
9.
Zoli M, Pucci S, Vilella A, Gotti C
. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr Neuropharmacol. 2017; 16(4):338-349.
PMC: 6018187.
DOI: 10.2174/1570159X15666170912110450.
View
10.
Pochini L, Scalise M, Di Silvestre S, Belviso S, Pandolfi A, Arduini A
. Acetylcholine and acetylcarnitine transport in peritoneum: Role of the SLC22A4 (OCTN1) transporter. Biochim Biophys Acta. 2016; 1858(4):653-60.
DOI: 10.1016/j.bbamem.2015.12.026.
View
11.
Pochini L, Barone F, Console L, Brunocilla C, Galluccio M, Scalise M
. OCTN1 (SLC22A4) displays two different transport pathways for organic cations or zwitterions. Biochim Biophys Acta Biomembr. 2023; 1866(2):184263.
DOI: 10.1016/j.bbamem.2023.184263.
View
12.
Wang W, Gallo L, Jadhav A, Hawkins R, Parker C
. The Druggability of Solute Carriers. J Med Chem. 2019; 63(8):3834-3867.
DOI: 10.1021/acs.jmedchem.9b01237.
View
13.
Sales M, Espanol A, Salem A, Pulido P, Sanchez Y, Sanchez F
. Role of Muscarinic Acetylcholine Receptors in Breast Cancer: Design of Metronomic Chemotherapy. Curr Clin Pharmacol. 2018; 14(2):91-100.
PMC: 7011678.
DOI: 10.2174/1574884714666181203095437.
View
14.
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi P
. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel). 2022; 14(19).
PMC: 9558974.
DOI: 10.3390/cancers14194562.
View
15.
Hiraizumi M, Akashi T, Murasaki K, Kishida H, Kumanomidou T, Torimoto N
. Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter. Nat Struct Mol Biol. 2023; 31(1):159-169.
PMC: 10803289.
DOI: 10.1038/s41594-023-01134-0.
View
16.
Pochini L, Scalise M, Galluccio M, Amelio L, Indiveri C
. Reconstitution in liposomes of the functionally active human OCTN1 (SLC22A4) transporter overexpressed in Escherichia coli. Biochem J. 2011; 439(2):227-33.
DOI: 10.1042/BJ20110544.
View
17.
Nishikubo K, Ohgaki R, Okanishi H, Okuda S, Xu M, Endou H
. Pharmacologic inhibition of LAT1 predominantly suppresses transport of large neutral amino acids and downregulates global translation in cancer cells. J Cell Mol Med. 2022; 26(20):5246-5256.
PMC: 9575050.
DOI: 10.1111/jcmm.17553.
View
18.
Berg T, Hegelund-Myrback T, Ockinger J, Zhou X, Brannstrom M, Hagemann-Jensen M
. Expression of MATE1, P-gp, OCTN1 and OCTN2, in epithelial and immune cells in the lung of COPD and healthy individuals. Respir Res. 2018; 19(1):68.
PMC: 5910606.
DOI: 10.1186/s12931-018-0760-9.
View
19.
Islas-Weinstein L, Marquina-Castillo B, Mata-Espinosa D, Paredes-Gonzalez I, Chavez J, Balboa L
. The Cholinergic System Contributes to the Immunopathological Progression of Experimental Pulmonary Tuberculosis. Front Immunol. 2021; 11:581911.
PMC: 7930380.
DOI: 10.3389/fimmu.2020.581911.
View
20.
Singh I, Seth A, Billesbolle C, Braz J, Rodriguiz R, Roy K
. Structure-based discovery of conformationally selective inhibitors of the serotonin transporter. Cell. 2023; 186(10):2160-2175.e17.
PMC: 10306110.
DOI: 10.1016/j.cell.2023.04.010.
View