6.
Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan S
. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014; 8(11):2218-30.
PMC: 4992075.
DOI: 10.1038/ismej.2014.63.
View
7.
Davies G, Henrissat B
. Structures and mechanisms of glycosyl hydrolases. Structure. 1995; 3(9):853-9.
DOI: 10.1016/S0969-2126(01)00220-9.
View
8.
Foley M, Walker M, Stewart A, OFlaherty S, Gentry E, Patel S
. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat Microbiol. 2023; 8(4):611-628.
PMC: 10066039.
DOI: 10.1038/s41564-023-01337-7.
View
9.
Wang B, Kuramitsu H
. Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon. J Bacteriol. 2003; 185(19):5791-9.
PMC: 193960.
DOI: 10.1128/JB.185.19.5791-5799.2003.
View
10.
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S
. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019; 8(3).
PMC: 6463098.
DOI: 10.3390/foods8030092.
View
11.
Han J, Lin K, Sequeira C, Borchers C
. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2014; 854:86-94.
DOI: 10.1016/j.aca.2014.11.015.
View
12.
Hosomi K, Saito M, Park J, Murakami H, Shibata N, Ando M
. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun. 2022; 13(1):4477.
PMC: 9388534.
DOI: 10.1038/s41467-022-32015-7.
View
13.
Fehlner-Peach H, Magnabosco C, Raghavan V, Scher J, Tett A, Cox L
. Distinct Polysaccharide Utilization Profiles of Human Intestinal Prevotella copri Isolates. Cell Host Microbe. 2019; 26(5):680-690.e5.
PMC: 7039456.
DOI: 10.1016/j.chom.2019.10.013.
View
14.
Maturana J, Cardenas J
. Insights on the Evolutionary Genomics of the Genus: Potential New Species and Genetic Content Among Lineages. Front Microbiol. 2021; 12:660920.
PMC: 8107234.
DOI: 10.3389/fmicb.2021.660920.
View
15.
Lapebie P, Lombard V, Drula E, Terrapon N, Henrissat B
. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun. 2019; 10(1):2043.
PMC: 6499787.
DOI: 10.1038/s41467-019-10068-5.
View
16.
Reichardt N, Vollmer M, Holtrop G, Farquharson F, Wefers D, Bunzel M
. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 2017; 12(2):610-622.
PMC: 5776475.
DOI: 10.1038/ismej.2017.196.
View
17.
Samuel B, Gordon J
. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A. 2006; 103(26):10011-6.
PMC: 1479766.
DOI: 10.1073/pnas.0602187103.
View
18.
Rahman S, OConnor A, Becker S, Patel R, Martindale R, Tsikitis V
. Gut microbial metabolites and its impact on human health. Ann Gastroenterol. 2023; 36(4):360-368.
PMC: 10304525.
DOI: 10.20524/aog.2023.0809.
View
19.
Koropatkin N, Cameron E, Martens E
. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012; 10(5):323-35.
PMC: 4005082.
DOI: 10.1038/nrmicro2746.
View
20.
Liu X, Cao S, Zhang X
. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet. J Agric Food Chem. 2015; 63(36):7885-95.
DOI: 10.1021/acs.jafc.5b02404.
View