6.
Tan B, Zhang X, Ansari A, Jadhav P, Tan H, Li K
. Design of a SARS-CoV-2 papain-like protease inhibitor with antiviral efficacy in a mouse model. Science. 2024; 383(6690):1434-1440.
DOI: 10.1126/science.adm9724.
View
7.
Ratia K, Saikatendu K, Santarsiero B, Barretto N, Baker S, Stevens R
. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A. 2006; 103(15):5717-22.
PMC: 1458639.
DOI: 10.1073/pnas.0510851103.
View
8.
Morais C, Mengarda A, Miguel F, Enes K, Rodrigues V, Espirito-Santo M
. Pyrazoline derivatives as promising novel antischistosomal agents. Sci Rep. 2021; 11(1):23437.
PMC: 8648852.
DOI: 10.1038/s41598-021-02792-0.
View
9.
Teoh S, Lim Y, Lai N, Lee S
. Directly Acting Antivirals for COVID-19: Where Do We Stand?. Front Microbiol. 2020; 11:1857.
PMC: 7419656.
DOI: 10.3389/fmicb.2020.01857.
View
10.
Owen D, Allerton C, Anderson A, Aschenbrenner L, Avery M, Berritt S
. An oral SARS-CoV-2 M inhibitor clinical candidate for the treatment of COVID-19. Science. 2021; 374(6575):1586-1593.
DOI: 10.1126/science.abl4784.
View
11.
Dziwornu G, Seanego D, Fienberg S, Clements M, Ferreira J, Sypu V
. 2,8-Disubstituted-1,5-naphthyridines as Dual Inhibitors of Phosphatidylinositol-4-kinase and Hemozoin Formation with Efficacy. J Med Chem. 2024; 67(13):11401-11420.
PMC: 11247499.
DOI: 10.1021/acs.jmedchem.4c01154.
View
12.
Rut W, Lv Z, Zmudzinski M, Patchett S, Nayak D, Snipas S
. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug design. Sci Adv. 2020; 6(42).
PMC: 7567588.
DOI: 10.1126/sciadv.abd4596.
View
13.
Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H
. The Protein Data Bank. Nucleic Acids Res. 1999; 28(1):235-42.
PMC: 102472.
DOI: 10.1093/nar/28.1.235.
View
14.
Friesner R, Banks J, Murphy R, Halgren T, Klicic J, Mainz D
. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004; 47(7):1739-49.
DOI: 10.1021/jm0306430.
View
15.
Sheahan T, Sims A, Zhou S, Graham R, Pruijssers A, Agostini M
. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 2020; 12(541).
PMC: 7164393.
DOI: 10.1126/scitranslmed.abb5883.
View
16.
Kandepedu N, Gonzalez Cabrera D, Eedubilli S, Taylor D, Brunschwig C, Gibhard L
. Identification, Characterization, and Optimization of 2,8-Disubstituted-1,5-naphthyridines as Novel Plasmodium falciparum Phosphatidylinositol-4-kinase Inhibitors with in Vivo Efficacy in a Humanized Mouse Model of Malaria. J Med Chem. 2018; 61(13):5692-5703.
DOI: 10.1021/acs.jmedchem.8b00648.
View
17.
Ghosh A, Brindisi M, Shahabi D, Chapman M, Mesecar A
. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics. ChemMedChem. 2020; 15(11):907-932.
PMC: 7264561.
DOI: 10.1002/cmdc.202000223.
View
18.
Shen Z, Ratia K, Cooper L, Kong D, Lee H, Kwon Y
. Design of SARS-CoV-2 PLpro Inhibitors for COVID-19 Antiviral Therapy Leveraging Binding Cooperativity. J Med Chem. 2021; 65(4):2940-2955.
PMC: 8547495.
DOI: 10.1021/acs.jmedchem.1c01307.
View
19.
Hersi F, Sebastian A, Tarazi H, Srinivasulu V, Mostafa A, Kamal Allayeh A
. Discovery of novel papain-like protease inhibitors for potential treatment of COVID-19. Eur J Med Chem. 2023; 254:115380.
PMC: 10106510.
DOI: 10.1016/j.ejmech.2023.115380.
View
20.
Meewan I, Kattoula J, Kattoula J, Skinner D, Fajtova P, Giardini M
. Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L. Pharmaceuticals (Basel). 2022; 15(6).
PMC: 9230533.
DOI: 10.3390/ph15060744.
View