6.
Choi E, Heo J, Oh J, Kim Y, Ha K, Kim J
. COX-2 regulates p53 activity and inhibits DNA damage-induced apoptosis. Biochem Biophys Res Commun. 2005; 328(4):1107-12.
DOI: 10.1016/j.bbrc.2005.01.072.
View
7.
Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K
. Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 2018; 234(5):5683-5699.
DOI: 10.1002/jcp.27411.
View
8.
Ye S, Li J, Li T, Song Y, Sun J, Chen X
. The Efficacy and Safety of Celecoxib in Addition to Standard Cancer Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Oncol. 2022; 29(9):6137-6153.
PMC: 9497539.
DOI: 10.3390/curroncol29090482.
View
9.
Dong L, Zou H, Yuan C, Hong Y, Kuklev D, Smith W
. Different Fatty Acids Compete with Arachidonic Acid for Binding to the Allosteric or Catalytic Subunits of Cyclooxygenases to Regulate Prostanoid Synthesis. J Biol Chem. 2015; 291(8):4069-78.
PMC: 4759183.
DOI: 10.1074/jbc.M115.698001.
View
10.
Yuan C, Rieke C, Rimon G, Wingerd B, Smith W
. Partnering between monomers of cyclooxygenase-2 homodimers. Proc Natl Acad Sci U S A. 2006; 103(16):6142-7.
PMC: 1458845.
DOI: 10.1073/pnas.0601805103.
View
11.
Penas-Prado M, Hess K, Fisch M, Lagrone L, Groves M, Levin V
. Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neuro Oncol. 2014; 17(2):266-73.
PMC: 4288521.
DOI: 10.1093/neuonc/nou155.
View
12.
Kong A, Leprevost F, Avtonomov D, Mellacheruvu D, Nesvizhskii A
. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017; 14(5):513-520.
PMC: 5409104.
DOI: 10.1038/nmeth.4256.
View
13.
Ozleyen A, Yilmaz Y, Donmez S, Atalay H, Antika G, Tumer T
. Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J Cancer Res Clin Oncol. 2022; 149(5):2095-2113.
PMC: 9310000.
DOI: 10.1007/s00432-022-04187-8.
View
14.
Rowlinson S, Crews B, Lanzo C, Marnett L
. The binding of arachidonic acid in the cyclooxygenase active site of mouse prostaglandin endoperoxide synthase-2 (COX-2). A putative L-shaped binding conformation utilizing the top channel region. J Biol Chem. 1999; 274(33):23305-10.
DOI: 10.1074/jbc.274.33.23305.
View
15.
Li S, Jiang M, Wang L, Yu S
. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed Pharmacother. 2020; 129:110389.
DOI: 10.1016/j.biopha.2020.110389.
View
16.
Saadi E, Sood R, Dromi I, Srouji R, Hatoum O, Tal S
. Limited Proteolysis of Cyclooxygenase-2 Enhances Cell Proliferation. Int J Mol Sci. 2020; 21(9).
PMC: 7246915.
DOI: 10.3390/ijms21093195.
View
17.
Xiao D, Levine L
. Stimulation of arachidonic acid metabolism: differences in potencies of recombinant human interleukin-1 alpha and interleukin-1 beta on two cell types. Prostaglandins. 1986; 32(5):709-18.
DOI: 10.1016/0090-6980(86)90193-0.
View
18.
Dong L, Yuan C, Orlando B, Malkowski M, Smith W
. Fatty Acid Binding to the Allosteric Subunit of Cyclooxygenase-2 Relieves a Tonic Inhibition of the Catalytic Subunit. J Biol Chem. 2016; 291(49):25641-25655.
PMC: 5207261.
DOI: 10.1074/jbc.M116.757310.
View
19.
Rizzo M
. Cyclooxygenase-2 in oncogenesis. Clin Chim Acta. 2010; 412(9-10):671-87.
DOI: 10.1016/j.cca.2010.12.026.
View
20.
Yang Y, Tang L, Wei W
. Prostanoids receptors signaling in different diseases/cancers progression. J Recept Signal Transduct Res. 2013; 33(1):14-27.
DOI: 10.3109/10799893.2012.752003.
View