6.
Zheng Y, Ding X, Poon C, Lo B, Zhang H, Zhou X
. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng. 2014; 61(5):1538-54.
PMC: 7176476.
DOI: 10.1109/TBME.2014.2309951.
View
7.
Chiu C, Huang C, Li J, Li C
. Flexible Hybrid Electronics Nanofiber Electrodes with Excellent Stretchability and Highly Stable Electrical Conductivity for Smart Clothing. ACS Appl Mater Interfaces. 2022; 14(37):42441-42453.
DOI: 10.1021/acsami.2c11724.
View
8.
Lee S, Byeon H, Lee J, Baek D, Lee K, Hong J
. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci Rep. 2014; 4:6074.
PMC: 4133715.
DOI: 10.1038/srep06074.
View
9.
Kim T, Park J, Sohn J, Cho D, Jeon S
. Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes. ACS Nano. 2016; 10(4):4770-8.
DOI: 10.1021/acsnano.6b01355.
View
10.
Al-Zaiti S, Besomi L, Bouzid Z, Faramand Z, Frisch S, Martin-Gill C
. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram. Nat Commun. 2020; 11(1):3966.
PMC: 7414145.
DOI: 10.1038/s41467-020-17804-2.
View
11.
Wu H, Yang G, Zhu K, Liu S, Guo W, Jiang Z
. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces. Adv Sci (Weinh). 2021; 8(2):2001938.
PMC: 7816724.
DOI: 10.1002/advs.202001938.
View
12.
Wang Y, Jiang L, Ren L, Pingao H, Yu M, Tian L
. Towards Improving the Quality of Electrophysiological Signal Recordings by Using Microneedle Electrode Arrays. IEEE Trans Biomed Eng. 2021; 68(11):3327-3335.
DOI: 10.1109/TBME.2021.3070541.
View
13.
Takaya M, Matsuda R, Inamori G, Kamoto U, Isoda Y, Tachibana D
. Transformable Electrocardiograph Using Robust Liquid-Solid Heteroconnector. ACS Sens. 2021; 6(1):212-219.
DOI: 10.1021/acssensors.0c02135.
View
14.
Niu X, Wang L, Li H, Wang T, Liu H, He Y
. Fructus Xanthii-Inspired Low Dynamic Noise Dry Bioelectrodes for Surface Monitoring of ECG. ACS Appl Mater Interfaces. 2022; 14(4):6028-6038.
DOI: 10.1021/acsami.1c22303.
View
15.
Liu H, Li H, Wang Z, Wei X, Zhu H, Sun M
. Robust and Multifunctional Kirigami Electronics with a Tough and Permeable Aramid Nanofiber Framework. Adv Mater. 2022; 34(50):e2207350.
DOI: 10.1002/adma.202207350.
View
16.
Jiang Z, Nayeem M, Fukuda K, Ding S, Jin H, Yokota T
. Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement. Adv Mater. 2019; 31(37):e1903446.
DOI: 10.1002/adma.201903446.
View
17.
Attia Z, Kapa S, Lopez-Jimenez F, McKie P, Ladewig D, Satam G
. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019; 25(1):70-74.
DOI: 10.1038/s41591-018-0240-2.
View
18.
Cui Z, Han Y, Huang Q, Dong J, Zhu Y
. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale. 2018; 10(15):6806-6811.
DOI: 10.1039/c7nr09570h.
View
19.
Guo W, Zheng P, Huang X, Zhuo H, Wu Y, Yin Z
. Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. ACS Appl Mater Interfaces. 2019; 11(8):8567-8575.
DOI: 10.1021/acsami.8b21836.
View
20.
Koo J, Jeong S, Shim H, Son D, Kim J, Kim D
. Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes. ACS Nano. 2017; 11(10):10032-10041.
DOI: 10.1021/acsnano.7b04292.
View